These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17002393)

  • 1. Molded, high surface area polymer electrolyte membranes from cured liquid precursors.
    Zhou Z; Dominey RN; Rolland JP; Maynor BW; Pandya AA; DeSimone JM
    J Am Chem Soc; 2006 Oct; 128(39):12963-72. PubMed ID: 17002393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications.
    Robertson NJ; Kostalik HA; Clark TJ; Mutolo PF; Abruña HD; Coates GW
    J Am Chem Soc; 2010 Mar; 132(10):3400-4. PubMed ID: 20178312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications.
    Miyatake K; Chikashige Y; Higuchi E; Watanabe M
    J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of polymer microstructures for MEMS: sacrificial layer micromolding and patterned substrate micromolding.
    Ferrell N; Woodard J; Hansford D
    Biomed Microdevices; 2007 Dec; 9(6):815-21. PubMed ID: 17564840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid acids as fuel cell electrolytes.
    Haile SM; Boysen DA; Chisholm CR; Merle RB
    Nature; 2001 Apr; 410(6831):910-3. PubMed ID: 11309611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing advanced alkaline polymer electrolytes for fuel cell applications.
    Pan J; Chen C; Zhuang L; Lu J
    Acc Chem Res; 2012 Mar; 45(3):473-81. PubMed ID: 22075175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly durable proton exchange membranes for low temperature fuel cells.
    Tang H; Pan M; Wang F; Shen PK; Jiang SP
    J Phys Chem B; 2007 Aug; 111(30):8684-90. PubMed ID: 17628100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-[[3-(Triethoxysilyl)propyl]amino]propane-1-sulfonic acid-poly(vinyl alcohol) cross-linked zwitterionic polymer electrolyte membranes for direct methanol fuel cell applications.
    Tripathi BP; Shahi VK
    ACS Appl Mater Interfaces; 2009 May; 1(5):1002-12. PubMed ID: 20355885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of proton conduction in polymer electrolyte membranes by 1H-1,2,3-triazole.
    Zhou Z; Li S; Zhang Y; Liu M; Li W
    J Am Chem Soc; 2005 Aug; 127(31):10824-5. PubMed ID: 16076176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrated arrays of acidic surface groups as model systems for interfacial structure and mechanisms in PEMs.
    Roudgar A; Narasimachary SP; Eikerling M
    J Phys Chem B; 2006 Oct; 110(41):20469-77. PubMed ID: 17034232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells.
    Varcoe JR; Slade RC; Lam How Yee E
    Chem Commun (Camb); 2006 Apr; (13):1428-9. PubMed ID: 16550289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte.
    Li J; Li X; Zhao Y; Lu W; Shao Z; Yi B
    ChemSusChem; 2012 May; 5(5):896-900. PubMed ID: 22529063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication Method for Laboratory-Scale High-Performance Membrane Electrode Assemblies for Fuel Cells.
    Sassin MB; Garsany Y; Gould BD; Swider-Lyons KE
    Anal Chem; 2017 Jan; 89(1):511-518. PubMed ID: 28105824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wafer-scale fabrication of polymer-based microdevices via injection molding and photolithographic micropatterning protocols.
    Lee DS; Yang H; Chung KH; Pyo HB
    Anal Chem; 2005 Aug; 77(16):5414-20. PubMed ID: 16097789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations of the ex situ ionic conductivities at 30 degrees C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities.
    Varcoe JR
    Phys Chem Chem Phys; 2007 Mar; 9(12):1479-86. PubMed ID: 17356755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in the high performance polymer electrolyte membranes for fuel cells.
    Zhang H; Shen PK
    Chem Soc Rev; 2012 Mar; 41(6):2382-94. PubMed ID: 22222889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomembranes for fuel cell electrolytes employing anhydrous proton conducting uracil composites.
    Yamada M; Honma I
    Biosens Bioelectron; 2006 May; 21(11):2064-9. PubMed ID: 16530401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.
    Scrosati B
    Chem Rec; 2005; 5(5):286-97. PubMed ID: 16211622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Part of the concentrations boundary layers in creations the electrical properties of cell containing two polymeric membranes and binary electrolyte solutions].
    Werner H; Slezak A
    Polim Med; 2007; 37(4):3-19. PubMed ID: 18572875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.