These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 17002453)
1. Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction. Beaulieu JC; Lea JM J Agric Food Chem; 2006 Oct; 54(20):7789-93. PubMed ID: 17002453 [TBL] [Abstract][Full Text] [Related]
2. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS). Aprea E; Biasioli F; Carlin S; Endrizzi I; Gasperi F J Agric Food Chem; 2009 May; 57(10):4011-8. PubMed ID: 19348421 [TBL] [Abstract][Full Text] [Related]
3. Aroma compounds in mini-watermelon fruits from different grafting combinations. Tripodi G; Condurso C; Cincotta F; Merlino M; Verzera A J Sci Food Agric; 2020 Feb; 100(3):1328-1335. PubMed ID: 31743449 [TBL] [Abstract][Full Text] [Related]
4. Screening of tropical fruit volatile compounds using solid-phase microextraction (SPME) fibers and internally cooled SPME fiber. Carasek E; Pawliszyn J J Agric Food Chem; 2006 Nov; 54(23):8688-96. PubMed ID: 17090108 [TBL] [Abstract][Full Text] [Related]
5. Comparison of fresh watermelon juice aroma characteristics of five varieties based on gas chromatography-olfactometry-mass spectrometry. Liu Y; He C; Song H Food Res Int; 2018 May; 107():119-129. PubMed ID: 29580469 [TBL] [Abstract][Full Text] [Related]
6. Comparison of volatile concentrations in hand-squeezed juices of four different lemon varieties. Allegrone G; Belliardo F; Cabella P J Agric Food Chem; 2006 Mar; 54(5):1844-8. PubMed ID: 16506842 [TBL] [Abstract][Full Text] [Related]
7. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS. Ferreira L; Perestrelo R; Caldeira M; Câmara JS J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016 [TBL] [Abstract][Full Text] [Related]
8. Effectiveness of different solid-phase microextraction fibres for differentiation of selected Madeira island fruits based on their volatile metabolite profile--identification of novel compounds. Pereira J; Pereira J; Câmara JS Talanta; 2011 Jan; 83(3):899-906. PubMed ID: 21147335 [TBL] [Abstract][Full Text] [Related]
9. Identification of volatile compounds in soybean at various developmental stages using solid phase microextraction. Boué SM; Shih BY; Carter-Wientjes CH; Cleveland TE J Agric Food Chem; 2003 Aug; 51(17):4873-6. PubMed ID: 12903938 [TBL] [Abstract][Full Text] [Related]
10. Evolution of volatile compounds in 'Cuoredolce®' and 'Rugby' mini- watermelons (Citrullus lanatus (Thunb.) Matsumura and Nakai) in relation to ripening at harvest. Bianchi G; Provenzi L; Rizzolo A J Sci Food Agric; 2020 Feb; 100(3):945-952. PubMed ID: 31489633 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of volatile compounds in thirty nine melon cultivars by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Shi J; Wu H; Xiong M; Chen Y; Chen J; Zhou B; Wang H; Li L; Fu X; Bie Z; Huang Y Food Chem; 2020 Jun; 316():126342. PubMed ID: 32044706 [TBL] [Abstract][Full Text] [Related]
12. Analysis of volatile compounds from various types of barley cultivars. Cramer AC; Mattinson DS; Fellman JK; Baik BK J Agric Food Chem; 2005 Sep; 53(19):7526-31. PubMed ID: 16159182 [TBL] [Abstract][Full Text] [Related]
13. Pattern recognition and genetic algorithms for discrimination of orange juices and reduction of significant components from headspace solid-phase microextraction. Rinaldi M; Gindro R; Barbeni M; Allegrone G Phytochem Anal; 2009; 20(5):402-7. PubMed ID: 19609881 [TBL] [Abstract][Full Text] [Related]
14. Composition of volatiles of banana cultivars from Madeira Island. Nogueira JM; Fernandes PJ; Nascimento AM Phytochem Anal; 2003; 14(2):87-90. PubMed ID: 12693632 [TBL] [Abstract][Full Text] [Related]
15. Profile of volatile compounds in 11 brandies by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Zhao Y; Xu Y; Li J; Fan W; Jiang W J Food Sci; 2009 Mar; 74(2):C90-9. PubMed ID: 19323737 [TBL] [Abstract][Full Text] [Related]
16. Characterization of volatile compounds of Mezcal, an ethnic alcoholic beverage obtained from Agave salmiana. De León-Rodríguez A; González-Hernández L; Barba de la Rosa AP; Escalante-Minakata P; López MG J Agric Food Chem; 2006 Feb; 54(4):1337-41. PubMed ID: 16478257 [TBL] [Abstract][Full Text] [Related]
17. Effect of lactic acid fermentation of watermelon juice on its sensory acceptability and volatile compounds. Mandha J; Shumoy H; Devaere J; Schouteten JJ; Gellynck X; de Winne A; Matemu AO; Raes K Food Chem; 2021 Oct; 358():129809. PubMed ID: 33933966 [TBL] [Abstract][Full Text] [Related]
18. Solid-phase microextraction method for the determination of volatile compounds associated to oxidation of fish muscle. Iglesias J; Medina I J Chromatogr A; 2008 May; 1192(1):9-16. PubMed ID: 18378245 [TBL] [Abstract][Full Text] [Related]
19. Volatile constituents throughout Brassica oleracea L. Var. acephala germination. Fernandes F; Guedes de Pinho P; Valentão P; Pereira JA; Andrade PB J Agric Food Chem; 2009 Aug; 57(15):6795-802. PubMed ID: 19606906 [TBL] [Abstract][Full Text] [Related]
20. Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and cooking by using SPME-GC-MS. Estévez M; Morcuende D; Ventanas S; Cava R J Agric Food Chem; 2003 May; 51(11):3429-35. PubMed ID: 12744679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]