These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 1700257)

  • 21. Pore formation by pho-controlled outer-membrane proteins of various Enterobacteriaceae in lipid bilayers.
    Bauer K; Schmid A; Boos W; Benz R; Tommassen J
    Eur J Biochem; 1988 May; 174(1):199-205. PubMed ID: 2453363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of IHF on sigmaS selectivity of the phoA and pst promoters of Escherichia coli.
    Taschner NP; Yagil E; Spira B
    Arch Microbiol; 2006 Apr; 185(3):234-7. PubMed ID: 16404567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of components of the Pseudomonas aeruginosa phosphate-starvation-inducible regulon in Escherichia coli.
    Siehnel RJ; Worobec EA; Hancock RE
    Mol Microbiol; 1988 May; 2(3):347-52. PubMed ID: 2456446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ugp and PitA participate in the selection of PHO-constitutive mutants.
    Iglesias Neves H; Pereira TF; Yagil E; Spira B
    J Bacteriol; 2015 Apr; 197(8):1378-85. PubMed ID: 25645557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The pho regulon-dependent Ugp uptake system for glycerol-3-phosphate in Escherichia coli is trans inhibited by Pi.
    Brzoska P; Rimmele M; Brzostek K; Boos W
    J Bacteriol; 1994 Jan; 176(1):15-20. PubMed ID: 8282692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PhoE protein pore of the outer membrane of Escherichia coli K12 is a particularly efficient channel for organic and inorganic phosphate.
    Korteland J; Tommassen J; Lugtenberg B
    Biochim Biophys Acta; 1982 Sep; 690(2):282-9. PubMed ID: 6289897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic improvement of Escherichia coli for enhanced biological removal of phosphate from wastewater.
    Kato J; Yamada K; Muramatsu A; Hardoyo ; Ohtake H
    Appl Environ Microbiol; 1993 Nov; 59(11):3744-9. PubMed ID: 8285680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleotide sequence of the genes involved in phosphate transport and regulation of the phosphate regulon in Escherichia coli.
    Amemura M; Makino K; Shinagawa H; Kobayashi A; Nakata A
    J Mol Biol; 1985 Jul; 184(2):241-50. PubMed ID: 2993631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH.
    Fischer RJ; Oehmcke S; Meyer U; Mix M; Schwarz K; Fiedler T; Bahl H
    J Bacteriol; 2006 Aug; 188(15):5469-78. PubMed ID: 16855236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altered Regulation of the Diguanylate Cyclase YaiC Reduces Production of Type 1 Fimbriae in a Pst Mutant of Uropathogenic Escherichia coli CFT073.
    Crépin S; Porcheron G; Houle S; Harel J; Dozois CM
    J Bacteriol; 2017 Dec; 199(24):. PubMed ID: 28924030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of PitA and PitB from Escherichia coli.
    Harris RM; Webb DC; Howitt SM; Cox GB
    J Bacteriol; 2001 Sep; 183(17):5008-14. PubMed ID: 11489853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The PhoU protein from Escherichia coli interacts with PhoR, PstB, and metals to form a phosphate-signaling complex at the membrane.
    Gardner SG; Johns KD; Tanner R; McCleary WR
    J Bacteriol; 2014 May; 196(9):1741-52. PubMed ID: 24563032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli.
    Willsky GR; Malamy MH
    J Bacteriol; 1980 Oct; 144(1):356-65. PubMed ID: 6998957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation and properties of PstSCAB, a high-affinity, high-velocity phosphate transport system of Sinorhizobium meliloti.
    Yuan ZC; Zaheer R; Finan TM
    J Bacteriol; 2006 Feb; 188(3):1089-102. PubMed ID: 16428413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interplay between genetic regulation of phosphate homeostasis and bacterial virulence.
    Chekabab SM; Harel J; Dozois CM
    Virulence; 2014; 5(8):786-93. PubMed ID: 25483775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships.
    Surin BP; Rosenberg H; Cox GB
    J Bacteriol; 1985 Jan; 161(1):189-98. PubMed ID: 3881386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic analysis by in vivo 31P nuclear magnetic resonance of internal Pi during the uptake of sn-glycerol-3-phosphate by the pho regulon-dependent Ugp system and the glp regulon-dependent GlpT system.
    Xavier KB; Kossmann M; Santos H; Boos W
    J Bacteriol; 1995 Feb; 177(3):699-704. PubMed ID: 7836304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromobacterium violaceum adaptation to low-phosphate conditions.
    da Costa Vasconcelos FN; Padilla G; Spira B
    Arch Microbiol; 2016 Apr; 198(3):269-77. PubMed ID: 26793969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis.
    Lamarche MG; Wanner BL; Crépin S; Harel J
    FEMS Microbiol Rev; 2008 May; 32(3):461-73. PubMed ID: 18248418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salmonella typhimurium contains an anion-selective outer membrane porin induced by phosphate starvation.
    Bauer K; Benz R; Brass J; Boos W
    J Bacteriol; 1985 Feb; 161(2):813-6. PubMed ID: 2981826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.