These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

981 related articles for article (PubMed ID: 17002676)

  • 41. Effects of PHD and HSP90 on erythropoietin production in yak (Bos grunniens) renal interstitial fibroblast-like cells under hypoxia.
    Cui Y; Li H; Yu SJ; Afedo SY; Bai XF
    J Mol Histol; 2022 Apr; 53(2):395-411. PubMed ID: 35084636
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PHD1 interacts with ATF4 and negatively regulates its transcriptional activity without prolyl hydroxylation.
    Hiwatashi Y; Kanno K; Takasaki C; Goryo K; Sato T; Torii S; Sogawa K; Yasumoto K
    Exp Cell Res; 2011 Dec; 317(20):2789-99. PubMed ID: 21951999
    [TBL] [Abstract][Full Text] [Related]  

  • 43. HIF hydroxylation and cellular oxygen sensing.
    Metzen E; Ratcliffe PJ
    Biol Chem; 2004; 385(3-4):223-30. PubMed ID: 15134335
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression.
    Ratcliffe PJ; O'Rourke JF; Maxwell PH; Pugh CW
    J Exp Biol; 1998 Apr; 201(Pt 8):1153-62. PubMed ID: 9510527
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nuclear-cytoplasmatic shuttling of proteins in control of cellular oxygen sensing.
    Depping R; Jelkmann W; Kosyna FK
    J Mol Med (Berl); 2015 Jun; 93(6):599-608. PubMed ID: 25809665
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hypoxia-induced erythropoietin expression in human neuroblastoma requires a methylation free HIF-1 binding site.
    Rössler J; Stolze I; Frede S; Freitag P; Schweigerer L; Havers W; Fandrey J
    J Cell Biochem; 2004 Sep; 93(1):153-61. PubMed ID: 15352172
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hypoxia signalling in the control of erythropoietin gene expression in rat hepatocytes.
    Göpfert T; Gess B; Eckardt KU; Kurtz A
    J Cell Physiol; 1996 Aug; 168(2):354-61. PubMed ID: 8707871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biochemical characterization of human HIF hydroxylases using HIF protein substrates that contain all three hydroxylation sites.
    Pappalardi MB; McNulty DE; Martin JD; Fisher KE; Jiang Y; Burns MC; Zhao H; Ho T; Sweitzer S; Schwartz B; Annan RS; Copeland RA; Tummino PJ; Luo L
    Biochem J; 2011 Jun; 436(2):363-9. PubMed ID: 21410436
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors.
    Aprelikova O; Chandramouli GV; Wood M; Vasselli JR; Riss J; Maranchie JK; Linehan WM; Barrett JC
    J Cell Biochem; 2004 Jun; 92(3):491-501. PubMed ID: 15156561
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integrity of the prolyl hydroxylase domain protein 2:erythropoietin pathway in aging mice.
    Li X; Sutherland S; Takeda K; Fong GH; Lee FS
    Blood Cells Mol Dis; 2010 Jun; 45(1):9-19. PubMed ID: 20400342
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hypoxia-inducible factors in the first trimester human lung.
    Groenman F; Rutter M; Caniggia I; Tibboel D; Post M
    J Histochem Cytochem; 2007 Apr; 55(4):355-63. PubMed ID: 17189520
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins.
    Takeda K; Aguila HL; Parikh NS; Li X; Lamothe K; Duan LJ; Takeda H; Lee FS; Fong GH
    Blood; 2008 Mar; 111(6):3229-35. PubMed ID: 18056838
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of prolyl hydroxylase domain-containing protein on hypertension/renal injury induced by high salt diet and nitric oxide withdrawal.
    Dallatu MK; Choi M; Oyekan AO
    J Hypertens; 2013 Oct; 31(10):2043-9. PubMed ID: 23811999
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of in-vitro screening methods on hypoxia inducible factor prolyl hydroxylase inhibitors.
    Wu Y; Jiang Z; You Q; Zhang X
    Bioorg Med Chem; 2017 Aug; 25(15):3891-3899. PubMed ID: 28625716
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The HIF pathway and erythrocytosis.
    Lee FS; Percy MJ
    Annu Rev Pathol; 2011; 6():165-92. PubMed ID: 20939709
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent advances and clinical application of erythropoietin and erythropoiesis-stimulating agents.
    Tanaka T; Nangaku M
    Exp Cell Res; 2012 May; 318(9):1068-73. PubMed ID: 22414872
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Retinoic acid regulates erythropoietin production cooperatively with hypoxia-inducible factors in human iPSC-derived erythropoietin-producing cells.
    Katagiri N; Hitomi H; Mae SI; Kotaka M; Lei L; Yamamoto T; Nishiyama A; Osafune K
    Sci Rep; 2021 Feb; 11(1):3936. PubMed ID: 33594180
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural basis for binding of the renal carcinoma target hypoxia-inducible factor 2α to prolyl hydroxylase domain 2.
    Figg WD; Fiorini G; Chowdhury R; Nakashima Y; Tumber A; McDonough MA; Schofield CJ
    Proteins; 2023 Nov; 91(11):1510-1524. PubMed ID: 37449559
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxygen sensors as therapeutic targets in kidney disease.
    Haase VH
    Nephrol Ther; 2017 Apr; 13 Suppl 1():S29-S34. PubMed ID: 28577740
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion.
    Brahimi-Horn C; Pouysségur J
    Bull Cancer; 2006 Aug; 93(8):E73-80. PubMed ID: 16935775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.