These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 17002818)

  • 1. Fluorescence of aromatic amines and their fluorescamine derivatives for detection of explosive vapors.
    Eastwood D; Fernandez C; Yoon B; Sheaff CN; Wai CM
    Appl Spectrosc; 2006 Sep; 60(9):958-63. PubMed ID: 17002818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.
    Sheaff CN; Eastwood D; Wai CM
    Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Portable Biosensor for 2,4-Dinitrotoluene Vapors.
    Prante M; Ude C; Große M; Raddatz L; Krings U; John G; Belkin S; Scheper T
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Unusual fluorescent properties of N-9-anthroyl derivatives of aromatic amines].
    Molotkovskiĭ IuG
    Bioorg Khim; 2003; 29(1):107-9. PubMed ID: 12659001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of nitroaromatics and explosives mimics by a fluorescent Zn(salicylaldimine) sensor array.
    Germain ME; Knapp MJ
    J Am Chem Soc; 2008 Apr; 130(16):5422-3. PubMed ID: 18376839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtogram detection of explosive nitroaromatics: fluoranthene-based fluorescent chemosensors.
    Venkatramaiah N; Kumar S; Patil S
    Chemistry; 2012 Nov; 18(46):14745-51. PubMed ID: 23015532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives.
    Lan A; Li K; Wu H; Olson DH; Emge TJ; Ki W; Hong M; Li J
    Angew Chem Int Ed Engl; 2009; 48(13):2334-8. PubMed ID: 19180622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of explosive vapors with a charge transfer molecule: self-assembly assisted morphology tuning and enhancement in sensing efficiency.
    Vijayakumar C; Tobin G; Schmitt W; Kim MJ; Takeuchi M
    Chem Commun (Camb); 2010 Feb; 46(6):874-6. PubMed ID: 20107635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of primary aromatic amines using precolumn derivatization by HPLC fluorescence detection and online MS identification.
    Zhao X; Suo Y
    J Sep Sci; 2008 Mar; 31(4):646-58. PubMed ID: 18264986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of Aerosol Jet Printed Fluorescence Quenching Sensor Arrays for the Identification and Quantification of Explosive Vapors.
    Bolse N; Eckstein R; Habermehl A; Hernandez-Sosa G; Eschenbaum C; Lemmer U
    ACS Omega; 2017 Oct; 2(10):6500-6505. PubMed ID: 31457251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent single walled carbon nanotube/silica composite materials.
    Satishkumar BC; Doorn SK; Baker GA; Dattelbaum AM
    ACS Nano; 2008 Nov; 2(11):2283-90. PubMed ID: 19206394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanism for the fluorogenic reaction of amino groups with fluorescamine and MDPF.
    Stockert JC; Blázquez A; Galaz S; Juarranz A
    Acta Histochem; 2008; 110(4):333-40. PubMed ID: 18272208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual detection of trace nitroaromatic explosive residue using photoluminescent metallole-containing polymers.
    Toal SJ; Sanchez JC; Dugan RE; Trogler WC
    J Forensic Sci; 2007 Jan; 52(1):79-83. PubMed ID: 17209914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 8-Phenyl-(4-oxy-acetic acid N-hydroxysuccinimidyl ester)-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene as a new highly fluorescent-derivatizing reagent for aliphatic amines in disease-related samples with high-performance liquid chromatography.
    Li JS; Wang H; Cao LW; Zhang HS
    Talanta; 2006 Jul; 69(5):1190-9. PubMed ID: 18970702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive.
    Tu R; Liu B; Wang Z; Gao D; Wang F; Fang Q; Zhang Z
    Anal Chem; 2008 May; 80(9):3458-65. PubMed ID: 18336012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aromatic electron acceptors change the chirality dependence of single-walled carbon nanotube oxidation.
    Knorr FJ; Hung WC; Wai CM
    Langmuir; 2009 Sep; 25(18):10417-21. PubMed ID: 19735124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidimensional detection of nitroorganic explosives by gas chromatography-pyrolysis-ultraviolet detection.
    Hodyss R; Beauchamp JL
    Anal Chem; 2005 Jun; 77(11):3607-10. PubMed ID: 15924395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ability of various materials to detect explosive vapors by fluorescent technologies: a comparative study.
    Bouhadid M; Caron T; Veignal F; Pasquinet E; Ratsimihety A; Ganachaud F; Montméat P
    Talanta; 2012 Oct; 100():254-61. PubMed ID: 23141334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence quenching of CdSe quantum dots by nitroaromatic explosives and their relative compounds.
    Shi GH; Shang ZB; Wang Y; Jin WJ; Zhang TC
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):247-52. PubMed ID: 17870656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in the Nanocatalysts-assisted NaBH
    Zhang K; Suh JM; Choi JW; Jang HW; Shokouhimehr M; Varma RS
    ACS Omega; 2019; 4(1):483-495. PubMed ID: 31032469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.