BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17002891)

  • 1. Elephant dung decomposition and coprophilous fungi in two habitats of semi-arid Botswana.
    Masunga GS; Andresen Ø; Taylor JE; Dhillion SS
    Mycol Res; 2006 Oct; 110(Pt 10):1214-26. PubMed ID: 17002891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. African horsesickness epidemiology: five species of Culicoides (Diptera: Ceratopogonidae) collected live behind the ears and at the dung of the African elephant in the Kruger National Park, South Africa.
    Meiswinkel R; Braack LE
    Onderstepoort J Vet Res; 1994 Jun; 61(2):155-70. PubMed ID: 7596566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal rates of native and exotic dung by dung beetles (Scarabaeidae: Scarabaeinae) in a fragmented tropical rain forest.
    Amézquita S; Favila ME
    Environ Entomol; 2010 Apr; 39(2):328-36. PubMed ID: 20388260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation between freshwater and terrestrial fungal communities on decaying bamboo culms.
    Cai L; Ji KF; Hyde KD
    Antonie Van Leeuwenhoek; 2006 Feb; 89(2):293-301. PubMed ID: 16710640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of the spatial and seasonal soil heterogeneity over arbuscular mycorrhizal fungal spore abundance in the semi-arid valley of Tehuacán-Cuicatlán, Mexico].
    Camargo-Ricalde SL; Esperón-Rodríguez M
    Rev Biol Trop; 2005; 53(3-4):339-52. PubMed ID: 17354445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density as an explanatory variable of movements and calf survival in savanna elephants across southern Africa.
    Young KD; Van Aarde RJ
    J Anim Ecol; 2010 May; 79(3):662-73. PubMed ID: 20180876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One elephant may sustain 2 million dung beetles in East African savannason any given day.
    Krell FT; Krell-Westerwalbesloh S
    Naturwissenschaften; 2024 Jan; 111(1):5. PubMed ID: 38294560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Succession of fungi colonizing porous and compact limestone exposed to subtropical environments.
    Gómez-Cornelio S; Mendoza-Vega J; Gaylarde CC; Reyes-Estebanez M; Morón-Ríos A; De la Rosa-García Sdel C; Ortega-Morales BO
    Fungal Biol; 2012 Oct; 116(10):1064-72. PubMed ID: 23063185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dung beetle assemblage structure in Tswalu Kalahari Reserve: responses to a mosaic of landscape types, vegetation communities, and dung types.
    Davis AL; Scholtz CH; Kryger U; Deschodt CM; Strümpher WP
    Environ Entomol; 2010 Jun; 39(3):811-20. PubMed ID: 20550793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest.
    Slade EM; Mann DJ; Villanueva JF; Lewis OT
    J Anim Ecol; 2007 Nov; 76(6):1094-104. PubMed ID: 17922706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An early record of Culicoides species (Diptera: Ceratopogonidae) developing in the dung of game animals in southern Africa.
    Dyce AL; Marshall BD
    Onderstepoort J Vet Res; 1989 Mar; 56(1):85-6. PubMed ID: 2726199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some coprophilous fungi from Kenya.
    Caretta G; Piontelli E; Savino E; Bulgheroni A
    Mycopathologia; 1998; 142(3):125-34. PubMed ID: 16284849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elephants, fire, and frost can determine community structure and composition in Kalahari Woodlands.
    Holdo RM
    Ecol Appl; 2007 Mar; 17(2):558-68. PubMed ID: 17489259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Interaction between coprophilous fungi and its impact on its natural substrate degradation].
    Papinutti VL; Diorio LA
    Rev Argent Microbiol; 1999; 31(4):182-7. PubMed ID: 10615680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities.
    Jacobsen AL; Pratt RB; Davis SD; Ewers FW
    Plant Cell Environ; 2007 Dec; 30(12):1599-609. PubMed ID: 17927695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of ecological variability on the reproductive endocrinology of wild female African elephants.
    Wittemyer G; Ganswindt A; Hodges K
    Horm Behav; 2007 Mar; 51(3):346-54. PubMed ID: 17320085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arbuscular mycorrhizal dynamics in a chronosequence of Caragana korshinskii plantations.
    Liu Y; He L; An L; Helgason T; Feng H
    FEMS Microbiol Ecol; 2009 Jan; 67(1):81-92. PubMed ID: 19120460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil.
    Toberman H; Freeman C; Evans C; Fenner N; Artz RR
    FEMS Microbiol Ecol; 2008 Nov; 66(2):426-36. PubMed ID: 18662311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal coexistence of dung-dweller and soil-digger dung beetles (Coleoptera, Scarabaeoidea) in contrasting Mediterranean habitats.
    Jay-Robert P; Errouissi F; Lumaret JP
    Bull Entomol Res; 2008 Jun; 98(3):303-16. PubMed ID: 18257957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ecology of nematode-trapping hyphomycetes in cattle dung from three plateau pastures.
    Su H; Hao Y; Mo M; Zhang K
    Vet Parasitol; 2007 Mar; 144(3-4):293-8. PubMed ID: 17113711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.