BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 17002977)

  • 1. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase.
    Kratzer R; Wilson DK; Nidetzky B
    IUBMB Life; 2006 Sep; 58(9):499-507. PubMed ID: 17002977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies.
    Kratzer R; Nidetzky B
    Biochem J; 2005 Jul; 389(Pt 2):507-15. PubMed ID: 15799715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site.
    Pival SL; Klimacek M; Nidetzky B
    Biochem J; 2009 Jun; 421(1):43-9. PubMed ID: 19368528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.
    Mayr P; Nidetzky B
    Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The xylose reductase (AKR2B5) structure: homology and divergence from other aldo-keto reductases and opportunities for protein engineering.
    Wilson DK; Kavanagh KL; Klimacek M; Nidetzky B
    Chem Biol Interact; 2003 Feb; 143-144():515-21. PubMed ID: 12604237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.
    Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK
    Biochemistry; 2002 Jul; 41(28):8785-95. PubMed ID: 12102621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis.
    Kratzer R; Leitgeb S; Wilson DK; Nidetzky B
    Biochem J; 2006 Jan; 393(Pt 1):51-8. PubMed ID: 16336198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases.
    Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK
    Biochem J; 2003 Jul; 373(Pt 2):319-26. PubMed ID: 12733986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274-->Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD+ and NADP+.
    Leitgeb S; Petschacher B; Wilson DK; Nidetzky B
    FEBS Lett; 2005 Jan; 579(3):763-7. PubMed ID: 15670843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Candida tenuis xylose reductase as highly selective biocatalyst for the synthesis of aromatic alpha-hydroxy esters and improvement of its efficiency by protein engineering.
    Kratzer R; Nidetzky B
    Chem Commun (Camb); 2007 Mar; (10):1047-9. PubMed ID: 17325801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the active site of yeast xylose reductase by site-directed mutagenesis of sequence motifs characteristic of two dehydrogenase/reductase family types.
    Klimacek M; Szekely M; Griessler R; Nidetzky B
    FEBS Lett; 2001 Jul; 500(3):149-52. PubMed ID: 11445075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.
    Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of yeast xylose reductase in complex with a novel NADP-DTT adduct provides insights into substrate recognition and catalysis.
    Paidimuddala B; Mohapatra SB; Gummadi SN; Manoj N
    FEBS J; 2018 Dec; 285(23):4445-4464. PubMed ID: 30269423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a novel NADH-specific aldo-keto reductase using sequence and structural homologies.
    Di Luccio E; Elling RA; Wilson DK
    Biochem J; 2006 Nov; 400(1):105-14. PubMed ID: 16813561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification, characterization, and crystal structure of an aldo-keto reductase (AKR2E4) from the silkworm Bombyx mori.
    Yamamoto K; Wilson DK
    Arch Biochem Biophys; 2013 Oct; 538(2):156-63. PubMed ID: 24012638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative anatomy of the aldo-keto reductase superfamily.
    Jez JM; Bennett MJ; Schlegel BP; Lewis M; Penning TM
    Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):625-36. PubMed ID: 9307009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural biology of the aldo-keto reductase family of enzymes: catalysis and cofactor binding.
    Sanli G; Dudley JI; Blaber M
    Cell Biochem Biophys; 2003; 38(1):79-101. PubMed ID: 12663943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.