These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 17003118)

  • 1. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps.
    Vengrenyuk Y; Carlier S; Xanthos S; Cardoso L; Ganatos P; Virmani R; Einav S; Gilchrist L; Weinbaum S
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14678-83. PubMed ID: 17003118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps.
    Vengrenyuk Y; Cardoso L; Weinbaum S
    Mol Cell Biomech; 2008 Mar; 5(1):37-47. PubMed ID: 18524245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size and proximity of micro-scale hard-inclusions increase the risk of rupture in fibroatheroma-like laboratory models.
    Corti A; Khalil D; De Paolis A; Cardoso L
    J Mech Behav Biomed Mater; 2023 May; 141():105749. PubMed ID: 36924613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcalcifications, Their Genesis, Growth, and Biomechanical Stability in Fibrous Cap Rupture.
    Cardoso L; Weinbaum S
    Adv Exp Med Biol; 2018; 1097():129-155. PubMed ID: 30315543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling.
    Bluestein D; Alemu Y; Avrahami I; Gharib M; Dumont K; Ricotta JJ; Einav S
    J Biomech; 2008; 41(5):1111-8. PubMed ID: 18258240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The explosive growth of small voids in vulnerable cap rupture; cavitation and interfacial debonding.
    Maldonado N; Kelly-Arnold A; Cardoso L; Weinbaum S
    J Biomech; 2013 Jan; 46(2):396-401. PubMed ID: 23218838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of tissue properties, shape and orientation of microcalcifications on vulnerable cap stability using different hyperelastic constitutive models.
    Cardoso L; Kelly-Arnold A; Maldonado N; Laudier D; Weinbaum S
    J Biomech; 2014 Mar; 47(4):870-7. PubMed ID: 24503048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix vesicles in the fibrous cap of atherosclerotic plaque: possible contribution to plaque rupture.
    Bobryshev YV; Killingsworth MC; Lord RS; Grabs AJ
    J Cell Mol Med; 2008 Oct; 12(5B):2073-82. PubMed ID: 18194456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture.
    Maldonado N; Kelly-Arnold A; Vengrenyuk Y; Laudier D; Fallon JT; Virmani R; Cardoso L; Weinbaum S
    Am J Physiol Heart Circ Physiol; 2012 Sep; 303(5):H619-28. PubMed ID: 22777419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical modeling of stress in stenotic arteries with microcalcifications: a micromechanical approximation.
    Wenk JF; Papadopoulos P; Zohdi TI
    J Biomech Eng; 2010 Sep; 132(9):091011. PubMed ID: 20815645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the thickness of the fibrous cap by optical coherence tomography.
    Kume T; Akasaka T; Kawamoto T; Okura H; Watanabe N; Toyota E; Neishi Y; Sukmawan R; Sadahira Y; Yoshida K
    Am Heart J; 2006 Oct; 152(4):755.e1-4. PubMed ID: 16996853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability.
    Jinnouchi H; Sato Y; Sakamoto A; Cornelissen A; Mori M; Kawakami R; Gadhoke NV; Kolodgie FD; Virmani R; Finn AV
    Atherosclerosis; 2020 Aug; 306():85-95. PubMed ID: 32654790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictors for target lesion microcalcifications in patients with stable coronary artery disease: an optical coherence tomography study.
    Reith S; Milzi A; Dettori R; Marx N; Burgmaier M
    Clin Res Cardiol; 2018 Sep; 107(9):763-771. PubMed ID: 29654434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging and analysis of microcalcifications and lipid/necrotic core calcification in fibrous cap atheroma.
    Maldonado N; Kelly-Arnold A; Laudier D; Weinbaum S; Cardoso L
    Int J Cardiovasc Imaging; 2015 Jun; 31(5):1079-87. PubMed ID: 25837377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does microcalcification increase the risk of rupture?
    Cilla M; Monterde D; Peña E; Martínez MÁ
    Proc Inst Mech Eng H; 2013 May; 227(5):588-99. PubMed ID: 23637269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Imaging of vulnerable plaque].
    Guagliumi G; Musumeci G; Pierli C; Fineschi M; Musuraca AC
    G Ital Cardiol (Rome); 2010 Dec; 11(12 Suppl 3):16S-21S. PubMed ID: 21491735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in intracoronary imaging techniques: focus on optical coherence tomography.
    Kubo T; Akasaka T
    Expert Rev Med Devices; 2008 Nov; 5(6):691-7. PubMed ID: 19025345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography.
    Yonetsu T; Kakuta T; Lee T; Takahashi K; Kawaguchi N; Yamamoto G; Koura K; Hishikari K; Iesaka Y; Fujiwara H; Isobe M
    Eur Heart J; 2011 May; 32(10):1251-9. PubMed ID: 21273202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses.
    Cilla M; Peña E; Martínez MA
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1001-13. PubMed ID: 22227796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What have we learned about plaque rupture in acute coronary syndromes?
    Choi SY; Mintz GS
    Curr Cardiol Rep; 2010 Jul; 12(4):338-43. PubMed ID: 20425160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.