These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 17003129)

  • 1. Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes.
    Cannon SB; Sterck L; Rombauts S; Sato S; Cheung F; Gouzy J; Wang X; Mudge J; Vasdewani J; Schiex T; Spannagl M; Monaghan E; Nicholson C; Humphray SJ; Schoof H; Mayer KF; Rogers J; Quétier F; Oldroyd GE; Debellé F; Cook DR; Retzel EF; Roe BA; Town CD; Tabata S; Van de Peer Y; Young ND
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14959-64. PubMed ID: 17003129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes.
    Bertioli DJ; Moretzsohn MC; Madsen LH; Sandal N; Leal-Bertioli SC; Guimarães PM; Hougaard BK; Fredslund J; Schauser L; Nielsen AM; Sato S; Tabata S; Cannon SB; Stougaard J
    BMC Genomics; 2009 Jan; 10():45. PubMed ID: 19166586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana.
    Mudge J; Cannon SB; Kalo P; Oldroyd GE; Roe BA; Town CD; Young ND
    BMC Plant Biol; 2005 Aug; 5():15. PubMed ID: 16102170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula.
    Alunni B; Kevei Z; Redondo-Nieto M; Kondorosi A; Mergaert P; Kondorosi E
    Mol Plant Microbe Interact; 2007 Sep; 20(9):1138-48. PubMed ID: 17849716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of homoeolocus organisation in paired BAC clones from white clover (Trifolium repens L.) and microcolinearity with model legume species.
    Hand ML; Cogan NO; Sawbridge TI; Spangenberg GC; Forster JW
    BMC Plant Biol; 2010 May; 10():94. PubMed ID: 20492736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis.
    Hougaard BK; Madsen LH; Sandal N; de Carvalho Moretzsohn M; Fredslund J; Schauser L; Nielsen AM; Rohde T; Sato S; Tabata S; Bertioli DJ; Stougaard J
    Genetics; 2008 Aug; 179(4):2299-312. PubMed ID: 18689902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Wide Identification, Evolutionary Analysis and Expression Profiles of LATERAL ORGAN BOUNDARIES DOMAIN Gene Family in Lotus japonicus and Medicago truncatula.
    Yang T; Fang GY; He H; Chen J
    PLoS One; 2016; 11(8):e0161901. PubMed ID: 27560982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization.
    Zhu H; Kim DJ; Baek JM; Choi HK; Ellis LC; Küester H; McCombie WR; Peng HM; Cook DR
    Plant Physiol; 2003 Mar; 131(3):1018-26. PubMed ID: 12644654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution and microsynteny of the apyrase gene family in three legume genomes.
    Cannon SB; McCombie WR; Sato S; Tabata S; Denny R; Palmer L; Katari M; Young ND; Stacey G
    Mol Genet Genomics; 2003 Dec; 270(4):347-61. PubMed ID: 14598165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes.
    Lin Y; Cheng Y; Jin J; Jin X; Jiang H; Yan H; Cheng B
    PLoS One; 2014; 9(7):e102825. PubMed ID: 25047803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lipoxygenase gene family: a genomic fossil of shared polyploidy between Glycine max and Medicago truncatula.
    Shin JH; Van K; Kim DH; Kim KD; Jang YE; Choi BS; Kim MY; Lee SH
    BMC Plant Biol; 2008 Dec; 8():133. PubMed ID: 19105811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-A response regulators.
    Op den Camp RH; De Mita S; Lillo A; Cao Q; Limpens E; Bisseling T; Geurts R
    Plant Physiol; 2011 Dec; 157(4):2013-22. PubMed ID: 22034625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome structure of the legume, Lotus japonicus.
    Sato S; Nakamura Y; Kaneko T; Asamizu E; Kato T; Nakao M; Sasamoto S; Watanabe A; Ono A; Kawashima K; Fujishiro T; Katoh M; Kohara M; Kishida Y; Minami C; Nakayama S; Nakazaki N; Shimizu Y; Shinpo S; Takahashi C; Wada T; Yamada M; Ohmido N; Hayashi M; Fukui K; Baba T; Nakamichi T; Mori H; Tabata S
    DNA Res; 2008 Aug; 15(4):227-39. PubMed ID: 18511435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic characterization of the LEED..PEEDs, a gene family unique to the medicago lineage.
    Trujillo DI; Silverstein KA; Young ND
    G3 (Bethesda); 2014 Aug; 4(10):2003-12. PubMed ID: 25155275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny.
    Kevei Z; Seres A; Kereszt A; Kaló P; Kiss P; Tóth G; Endre G; Kiss GB
    Mol Genet Genomics; 2005 Dec; 274(6):644-57. PubMed ID: 16273388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary history of mitogen-activated protein kinase (MAPK) genes in Lotus, Medicago, and Phaseolus.
    Neupane A; Nepal MP; Benson BV; Macarthur KJ; Piya S
    Plant Signal Behav; 2013 Nov; 8(11):e27189. PubMed ID: 24317362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Medicago genome provides insight into the evolution of rhizobial symbioses.
    Young ND; Debellé F; Oldroyd GE; Geurts R; Cannon SB; Udvardi MK; Benedito VA; Mayer KF; Gouzy J; Schoof H; Van de Peer Y; Proost S; Cook DR; Meyers BC; Spannagl M; Cheung F; De Mita S; Krishnakumar V; Gundlach H; Zhou S; Mudge J; Bharti AK; Murray JD; Naoumkina MA; Rosen B; Silverstein KA; Tang H; Rombauts S; Zhao PX; Zhou P; Barbe V; Bardou P; Bechner M; Bellec A; Berger A; Bergès H; Bidwell S; Bisseling T; Choisne N; Couloux A; Denny R; Deshpande S; Dai X; Doyle JJ; Dudez AM; Farmer AD; Fouteau S; Franken C; Gibelin C; Gish J; Goldstein S; González AJ; Green PJ; Hallab A; Hartog M; Hua A; Humphray SJ; Jeong DH; Jing Y; Jöcker A; Kenton SM; Kim DJ; Klee K; Lai H; Lang C; Lin S; Macmil SL; Magdelenat G; Matthews L; McCorrison J; Monaghan EL; Mun JH; Najar FZ; Nicholson C; Noirot C; O'Bleness M; Paule CR; Poulain J; Prion F; Qin B; Qu C; Retzel EF; Riddle C; Sallet E; Samain S; Samson N; Sanders I; Saurat O; Scarpelli C; Schiex T; Segurens B; Severin AJ; Sherrier DJ; Shi R; Sims S; Singer SR; Sinharoy S; Sterck L; Viollet A; Wang BB; Wang K; Wang M; Wang X; Warfsmann J; Weissenbach J; White DD; White JD; Wiley GB; Wincker P; Xing Y; Yang L; Yao Z; Ying F; Zhai J; Zhou L; Zuber A; Dénarié J; Dixon RA; May GD; Schwartz DC; Rogers J; Quétier F; Town CD; Roe BA
    Nature; 2011 Nov; 480(7378):520-4. PubMed ID: 22089132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three sequenced legume genomes and many crop species: rich opportunities for translational genomics.
    Cannon SB; May GD; Jackson SA
    Plant Physiol; 2009 Nov; 151(3):970-7. PubMed ID: 19759344
    [No Abstract]   [Full Text] [Related]  

  • 19. Insights into the evolution of symbiosis gene copy number and distribution from a chromosome-scale Lotus japonicus Gifu genome sequence.
    Kamal N; Mun T; Reid D; Lin JS; Akyol TY; Sandal N; Asp T; Hirakawa H; Stougaard J; Mayer KFX; Sato S; Andersen SU
    DNA Res; 2020 Jun; 27(3):. PubMed ID: 32658273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The model legume genomes.
    Cannon SB
    Methods Mol Biol; 2013; 1069():1-14. PubMed ID: 23996304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.