BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 17003130)

  • 1. Structural and mutational studies of the amino acid-editing domain from archaeal/eukaryal phenylalanyl-tRNA synthetase.
    Sasaki HM; Sekine S; Sengoku T; Fukunaga R; Hattori M; Utsunomiya Y; Kuroishi C; Kuramitsu S; Shirouzu M; Yokoyama S
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14744-9. PubMed ID: 17003130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenylalanyl-tRNA synthetase contains a dispensable RNA-binding domain that contributes to the editing of noncognate aminoacyl-tRNA.
    Roy H; Ibba M
    Biochemistry; 2006 Aug; 45(30):9156-62. PubMed ID: 16866361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of phenylalanyl-tRNA synthetase complexed with phenylalanine and a phenylalanyl-adenylate analogue.
    Reshetnikova L; Moor N; Lavrik O; Vassylyev DG
    J Mol Biol; 1999 Apr; 287(3):555-68. PubMed ID: 10092459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chimeric human mitochondrial PheRS exhibits editing activity to discriminate nonprotein amino acids.
    Kartvelishvili E; Peretz M; Tworowski D; Moor N; Safro M
    Protein Sci; 2016 Mar; 25(3):618-26. PubMed ID: 26645192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transplantation of a tyrosine editing domain into a tyrosyl-tRNA synthetase variant enhances its specificity for a tyrosine analog.
    Oki K; Sakamoto K; Kobayashi T; Sasaki HM; Yokoyama S
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13298-303. PubMed ID: 18765802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for discrimination of L-phenylalanine from L-tyrosine by phenylalanyl-tRNA synthetase.
    Kotik-Kogan O; Moor N; Tworowski D; Safro M
    Structure; 2005 Dec; 13(12):1799-807. PubMed ID: 16338408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic and mutational studies of seryl-tRNA synthetase from the archaeon Pyrococcus horikoshii.
    Itoh Y; Sekine S; Kuroishi C; Terada T; Shirouzu M; Kuramitsu S; Yokoyama S
    RNA Biol; 2008; 5(3):169-77. PubMed ID: 18818520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal pathway for posttransfer editing reactions: insights from the crystal structure of TtPheRS with puromycin.
    Tworowski D; Klipcan L; Peretz M; Moor N; Safro MG
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):3967-72. PubMed ID: 25775602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain.
    Richardson CJ; First EA
    Biochemistry; 2016 Mar; 55(10):1541-53. PubMed ID: 26890980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The C-terminal domain of the archaeal leucyl-tRNA synthetase prevents misediting of isoleucyl-tRNA(Ile).
    Fukunaga R; Yokoyama S
    Biochemistry; 2007 May; 46(17):4985-96. PubMed ID: 17407269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-transfer editing in vitro and in vivo by the beta subunit of phenylalanyl-tRNA synthetase.
    Roy H; Ling J; Irnov M; Ibba M
    EMBO J; 2004 Nov; 23(23):4639-48. PubMed ID: 15526031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenylalanyl-tRNA synthetase editing defects result in efficient mistranslation of phenylalanine codons as tyrosine.
    Ling J; Yadavalli SS; Ibba M
    RNA; 2007 Nov; 13(11):1881-6. PubMed ID: 17804641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations.
    Kast P; Hennecke H
    J Mol Biol; 1991 Nov; 222(1):99-124. PubMed ID: 1942071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial and eukaryotic phenylalanyl-tRNA synthetases catalyze misaminoacylation of tRNA(Phe) with 3,4-dihydroxy-L-phenylalanine.
    Moor N; Klipcan L; Safro MG
    Chem Biol; 2011 Oct; 18(10):1221-9. PubMed ID: 22035791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of editing activity during the evolution of mitochondrial phenylalanyl-tRNA synthetase.
    Roy H; Ling J; Alfonzo J; Ibba M
    J Biol Chem; 2005 Nov; 280(46):38186-92. PubMed ID: 16162501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of the ternary complex of phenylalanyl-tRNA synthetase with tRNAPhe and a phenylalanyl-adenylate analogue reveals a conformational switch of the CCA end.
    Moor N; Kotik-Kogan O; Tworowski D; Sukhanova M; Safro M
    Biochemistry; 2006 Sep; 45(35):10572-83. PubMed ID: 16939209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition.
    Fukunaga R; Yokoyama S
    Nat Struct Mol Biol; 2005 Oct; 12(10):915-22. PubMed ID: 16155584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of the water-assisted asparagine recognition by asparaginyl-tRNA synthetase.
    Iwasaki W; Sekine S; Kuroishi C; Kuramitsu S; Shirouzu M; Yokoyama S
    J Mol Biol; 2006 Jul; 360(2):329-42. PubMed ID: 16753178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breaking a single hydrogen bond in the mitochondrial tRNA
    Peretz M; Tworowski D; Kartvelishvili E; Livingston J; Chrzanowska-Lightowlers Z; Safro M
    FEBS J; 2020 Sep; 287(17):3814-3826. PubMed ID: 32115907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.