These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 17003191)

  • 1. Management of segmental bony defects: the role of osteoconductive orthobiologics.
    McKee MD
    J Am Acad Orthop Surg; 2006; 14(10 Spec No.):S163-7. PubMed ID: 17003191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of osteoconductive bone graft substitutes in orthopaedic trauma.
    Hak DJ
    J Am Acad Orthop Surg; 2007 Sep; 15(9):525-36. PubMed ID: 17761609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium sulfates: what is the evidence?
    Beuerlein MJ; McKee MD
    J Orthop Trauma; 2010 Mar; 24 Suppl 1():S46-51. PubMed ID: 20182236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A platelet-rich plasma-based membrane as a periosteal substitute with enhanced osteogenic and angiogenic properties: a new concept for bone repair.
    El Backly RM; Zaky SH; Muraglia A; Tonachini L; Brun F; Canciani B; Chiapale D; Santolini F; Cancedda R; Mastrogiacomo M
    Tissue Eng Part A; 2013 Jan; 19(1-2):152-65. PubMed ID: 22849574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic bone scaffolds and fracture repair.
    Carson JS; Bostrom MP
    Injury; 2007 Mar; 38 Suppl 1():S33-7. PubMed ID: 17383484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Bone substitutes - basic principles and clinical applications].
    Garcia P; Franz D; Raschke M
    Z Orthop Unfall; 2014 Apr; 152(2):152-60. PubMed ID: 24760455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of calcium phosphate-based cancellous bone void fillers in trauma surgery.
    Szpalski M; Gunzburg R
    Orthopedics; 2002 May; 25(5 Suppl):s601-9. PubMed ID: 12038849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demineralized bone matrix and hydroxyapatite/tri-calcium phosphate mixture for bone healing in rats.
    Oztürk A; Yetkin H; Memis L; Cila E; Bolukbasi S; Gemalmaz HC
    Int Orthop; 2006 Jun; 30(3):147-52. PubMed ID: 16565837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term in vivo experimental investigations on magnesium doped hydroxyapatite bone substitutes.
    Sartori M; Giavaresi G; Tschon M; Martini L; Dolcini L; Fiorini M; Pressato D; Fini M
    J Mater Sci Mater Med; 2014 Jun; 25(6):1495-504. PubMed ID: 24554305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of bone-graft substitutes in large bone defects: any specific needs?
    Calori GM; Mazza E; Colombo M; Ripamonti C
    Injury; 2011 Sep; 42 Suppl 2():S56-63. PubMed ID: 21752369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Bone tissue engineering in clinical application : assessment of the current situation].
    Bernstein P; Bornhäuser M; Günther KP; Stiehler M
    Orthopade; 2009 Nov; 38(11):1029-37. PubMed ID: 19838667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of demineralized bone matrix-calcium sulfate with vancomycin on calcaneal fracture healing and infection rates: a prospective study.
    Bibbo C; Patel DV
    Foot Ankle Int; 2006 Jul; 27(7):487-93. PubMed ID: 16842714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite biopolymers for bone regeneration enhancement in bony defects.
    Jahan K; Tabrizian M
    Biomater Sci; 2016 Jan; 4(1):25-39. PubMed ID: 26317131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration.
    Rodriguez RU; Kemper N; Breathwaite E; Dutta SM; Hsu EL; Hsu WK; Francis MP
    Biofabrication; 2016 Jul; 8(3):035007. PubMed ID: 27458901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium phosphates: what is the evidence?
    Larsson S
    J Orthop Trauma; 2010 Mar; 24 Suppl 1():S41-5. PubMed ID: 20182235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Management of traumatic bone defects: Metaphyseal versus diaphyseal defects.
    Blokhuis TJ
    Injury; 2017 Jun; 48 Suppl 1():S91-S93. PubMed ID: 28449857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current understanding of osteoconduction in bone regeneration.
    Cornell CN; Lane JM
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S267-73. PubMed ID: 9917646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria.
    Manchón A; Hamdan Alkhraisat M; Rueda-Rodriguez C; Prados-Frutos JC; Torres J; Lucas-Aparicio J; Ewald A; Gbureck U; López-Cabarcos E
    Biomed Mater; 2015 Oct; 10(5):055012. PubMed ID: 26481113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of porous PLA/DBM composite biomaterials and experimental research of repair rabbit radius segmental bone defect.
    Zhang Y; Wang J; Wang J; Niu X; Liu J; Gao L; Zhai X; Chu K
    Cell Tissue Bank; 2015 Dec; 16(4):615-22. PubMed ID: 25904497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration?
    Hannink G; Arts JJ
    Injury; 2011 Sep; 42 Suppl 2():S22-5. PubMed ID: 21714966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.