BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 17003348)

  • 41. Uncoupling by (--)-epigallocatechin-3-gallate of ATP-sensitive potassium channels from phosphatidylinositol polyphosphates and ATP.
    Jin JY; Park SH; Bae JH; Cho HC; Lim JG; Park WS; Han J; Lee JH; Song DK
    Pharmacol Res; 2007 Sep; 56(3):237-47. PubMed ID: 17656102
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pharmacogenomic analysis of ATP-sensitive potassium channels coexpressing the common type 2 diabetes risk variants E23K and S1369A.
    Lang VY; Fatehi M; Light PE
    Pharmacogenet Genomics; 2012 Mar; 22(3):206-14. PubMed ID: 22209866
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Does inhibiting Sur1 complement rt-PA in cerebral ischemia?
    Simard JM; Geng Z; Silver FL; Sheth KN; Kimberly WT; Stern BJ; Colucci M; Gerzanich V
    Ann N Y Acad Sci; 2012 Sep; 1268():95-107. PubMed ID: 22994227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Granule mobility, fusion frequency and insulin secretion are differentially affected by insulinotropic stimuli.
    Schumacher K; Matz M; Brüning D; Baumann K; Rustenbeck I
    Traffic; 2015 May; 16(5):493-509. PubMed ID: 25615411
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The antidiabetic drug glibenclamide exerts direct retinal neuroprotection.
    Berdugo M; Delaunay K; Naud MC; Guegan J; Moulin A; Savoldelli M; Picard E; Radet L; Jonet L; Djerada Z; Gozalo C; Daruich A; Beltrand J; Jeanny JC; Kermorvant-Duchemin E; Crisanti P; Polak M; Behar-Cohen F
    Transl Res; 2021 Mar; 229():83-99. PubMed ID: 33080394
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hetero-bivalent GLP-1/glibenclamide for targeting pancreatic β-cells.
    Hart NJ; Chung WJ; Weber C; Ananthakrishnan K; Anderson M; Patek R; Zhang Z; Limesand SW; Vagner J; Lynch RM
    Chembiochem; 2014 Jan; 15(1):135-45. PubMed ID: 24259278
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of Action of Novel Glibenclamide Derivatives on Potassium and Calcium Channels for Insulin Secretion.
    Frederico MJS; Castro AJG; Menegaz D; Murat CB; Mendes CP; Mascarello A; Nunes RJ; Silva FRMB
    Curr Drug Targets; 2017; 18(6):641-650. PubMed ID: 27316908
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Ratiometric Sensor for Imaging Insulin Secretion in Single β Cells.
    Schifferer M; Yushchenko DA; Stein F; Bolbat A; Schultz C
    Cell Chem Biol; 2017 Apr; 24(4):525-531.e4. PubMed ID: 28366620
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Imaging Insulin Granule Dynamics in Human Pancreatic β-Cells Using Total Internal Reflection Fluorescence (TIRF) Microscopy.
    Kang F; Gaisano HY
    Methods Mol Biol; 2022; 2473():79-88. PubMed ID: 35819760
    [TBL] [Abstract][Full Text] [Related]  

  • 50. β-Cell-intrinsic β-arrestin 1 signaling enhances sulfonylurea-induced insulin secretion.
    Barella LF; Rossi M; Zhu L; Cui Y; Mei FC; Cheng X; Chen W; Gurevich VV; Wess J
    J Clin Invest; 2019 Jun; 129(9):3732-3737. PubMed ID: 31184597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The TRPA1 channel and oral hypoglycemic agents: is there complicity in β-cell exhaustion?
    Diaz-Garcia CM
    Channels (Austin); 2013; 7(6):420-2. PubMed ID: 23921548
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mitiglinide: KAD 1229, S 21403.
    Drugs R D; 2004; 5(2):98-101. PubMed ID: 15293870
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design, Synthesis, Molecular Modeling and Anti-Hyperglycemic Evaluation of Quinazoline-Sulfonylurea Hybrids as Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) and Sulfonylurea Receptor (SUR) Agonists.
    El-Zahabi MA; Bamanie FH; Ghareeb S; Alshaeri HK; Alasmari MM; Moustafa M; Al-Marzooki Z; Zayed MF
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077003
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efforts to develop methods for in vivo evaluation of the native beta-cell mass.
    Schneider S
    Diabetes Obes Metab; 2008 Nov; 10 Suppl 4():109-18. PubMed ID: 18834438
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural Insights Into the High Selectivity of the Anti-Diabetic Drug Mitiglinide.
    Wang M; Wu JX; Chen L
    Front Pharmacol; 2022; 13():929684. PubMed ID: 35847046
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diabetes, Obesity, COVID-19, Insulin, and Other Antidiabetes Drugs.
    Dandona P; Ghanim H
    Diabetes Care; 2021 Sep; 44(9):1929-1933. PubMed ID: 34244331
    [No Abstract]   [Full Text] [Related]  

  • 57. Dairy of a newcomer.
    SCHWALM VI
    Am J Nurs; 1960 Apr; 60():530-3. PubMed ID: 14443946
    [No Abstract]   [Full Text] [Related]  

  • 58. Taking a history with newcomer children and adolescents.
    Vo D
    Paediatr Child Health; 2014 Feb; 19(2):87-8. PubMed ID: 24596482
    [No Abstract]   [Full Text] [Related]  

  • 59. Noncanonical Regulation of cAMP-Dependent Insulin Secretion and Its Implications in Type 2 Diabetes.
    Ramanadham S; Turk J; Bhatnagar S
    Compr Physiol; 2023 Jun; 13(3):5023-5049. PubMed ID: 37358504
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The changing view of insulin granule mobility: From conveyor belt to signaling hub.
    Gaus B; Brüning D; Groß S; Müller M; Rustenbeck I
    Front Endocrinol (Lausanne); 2022; 13():983152. PubMed ID: 36120467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.