BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 17003449)

  • 21. Trans-scleral delivery of antiangiogenic proteins.
    Demetriades AM; Deering T; Liu H; Lu L; Gehlbach P; Packer JD; Mac Gabhann F; Popel AS; Wei LL; Campochiaro PA
    J Ocul Pharmacol Ther; 2008 Feb; 24(1):70-9. PubMed ID: 18370877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of subconjunctival and intrascleral drug delivery to the posterior segment using dynamic contrast-enhanced magnetic resonance imaging.
    Kim SH; Galbán CJ; Lutz RJ; Dedrick RL; Csaky KG; Lizak MJ; Wang NS; Tansey G; Robinson MR
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):808-14. PubMed ID: 17251481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pharmacokinetics of systemic versus focal Carboplatin chemotherapy in the rabbit eye: possible implication in the treatment of retinoblastoma.
    Hayden BC; Jockovich ME; Murray TG; Voigt M; Milne P; Kralinger M; Feuer WJ; Hernandez E; Parel JM
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3644-9. PubMed ID: 15452072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of benzalkonium chloride on transscleral drug delivery.
    Okabe K; Kimura H; Okabe J; Kato A; Shimizu H; Ueda T; Shimada S; Ogura Y
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):703-8. PubMed ID: 15671302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Route of penetration of topically instilled nipradilol into the ipsilateral posterior retina.
    Mizuno K; Koide T; Shimada S; Mori J; Sawanobori K; Araie M
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2839-47. PubMed ID: 19218605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polysulfone capillary fiber for intraocular drug delivery: in vitro and in vivo evaluations.
    Rahimy MH; Peyman GA; Chin SY; Golshani R; Aras C; Borhani H; Thompson H
    J Drug Target; 1994; 2(4):289-98. PubMed ID: 7858954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topical and systemic absorption in delivery of dexamethasone to the anterior and posterior segments of the eye.
    Sigurdsson HH; Konráethsdóttir F; Loftsson T; Stefánsson E
    Acta Ophthalmol Scand; 2007 Sep; 85(6):598-602. PubMed ID: 17645424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of particle size of polymeric nanospheres on intravitreal kinetics.
    Sakurai E; Ozeki H; Kunou N; Ogura Y
    Ophthalmic Res; 2001; 33(1):31-6. PubMed ID: 11114602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Injection site and pharmacokinetics after intravitreal injection of immunoglobulin G.
    Miura Y; Uematsu M; Teshima M; Suzuma K; Kumagami T; Sasaki H; Kitaoka T
    J Ocul Pharmacol Ther; 2011 Feb; 27(1):35-41. PubMed ID: 21182428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A drug refillable device for transscleral sustained drug delivery to the retina.
    Nagai N; Saijo S; Song Y; Kaji H; Abe T
    Eur J Pharm Biopharm; 2019 Mar; 136():184-191. PubMed ID: 30690065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Methods of digital differential fluorescein study of the ocular drainage tract].
    Shmyreva VF; Petrov SIu; Novikov IA; Zueva IuS
    Vestn Oftalmol; 2005; 121(3):3-5. PubMed ID: 16075617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes.
    Bochot A; Fattal E; Boutet V; Deverre JR; Jeanny JC; Chacun H; Couvreur P
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):253-9. PubMed ID: 11773039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis.
    Myles ME; Neumann DM; Hill JM
    Adv Drug Deliv Rev; 2005 Dec; 57(14):2063-79. PubMed ID: 16310884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preclinical evaluation of a novel episcleral cyclosporine implant for ocular graft-versus-host disease.
    Kim H; Csaky KG; Gilger BC; Dunn JP; Lee SS; Tremblay M; de Monasterio F; Tansey G; Yuan P; Bungay PM; Lutz RJ; Robinson MR
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):655-62. PubMed ID: 15671296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anterior chamber fluorescein kinetics compared with vitreous kinetics in normal subjects.
    Knudsen LL; Olsen T; Nielsen-Kudsk F
    Acta Ophthalmol Scand; 1998 Oct; 76(5):561-7. PubMed ID: 9826040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validation of an ocular microdialysis technique in rabbits with permanently implanted vitreous probes: systemic and intravitreal pharmacokinetics of fluorescein.
    Anand BS; Atluri H; Mitra AK
    Int J Pharm; 2004 Aug; 281(1-2):79-88. PubMed ID: 15288345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clearance Kinetics and Clearance Routes of Molecules From the Suprachoroidal Space After Microneedle Injection.
    Chiang B; Wang K; Ethier CR; Prausnitz MR
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):545-554. PubMed ID: 28125841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on the technique of vitreous fluorophotometry.
    Zeimer RC; Cunha-Vaz JG; Johnson ME
    Invest Ophthalmol Vis Sci; 1982 May; 22(5):668-74. PubMed ID: 7076410
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmacokinetic comparison of ketorolac after intracameral, intravitreal, and suprachoroidal administration in rabbits.
    Wang M; Liu W; Lu Q; Zeng H; Liu S; Yue Y; Cheng H; Liu Y; Xue M
    Retina; 2012; 32(10):2158-64. PubMed ID: 23099451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Episcleral clearance of sodium fluorescein from a bioerodible sub-tenon's implant in the rat.
    Chan JE; Pridgen TA; Csaky KG
    Exp Eye Res; 2010 Apr; 90(4):501-6. PubMed ID: 20064508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.