These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 17003624)
1. Transport distraction osteogenesis using nitinol spring: an exploration in canine mandible. Zhou HZ; Hu M; Hu KJ; Yao J; Liu YP J Craniofac Surg; 2006 Sep; 17(5):943-9. PubMed ID: 17003624 [TBL] [Abstract][Full Text] [Related]
2. [Segmental mandibular reconstruction by elasticity distraction osteogenesis associated with guided bone regeneration]. Zhou HZ; Hu M; Liu HC; Yao J; Ma L Zhonghua Kou Qiang Yi Xue Za Zhi; 2005 Nov; 40(6):474-7. PubMed ID: 16329831 [TBL] [Abstract][Full Text] [Related]
3. The study of distraction osteogenesis with nitinol shape memory alloy spring controlled by infrared light. Wang C; Zeng RS; Wang JN; Huang HZ; Sun J; Luo ZB Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Aug; 110(2):157-66. PubMed ID: 20382048 [TBL] [Abstract][Full Text] [Related]
4. Rapid lengthening of rabbit mandibular ramus by using nitinol spring: a preliminary study. Zhou HZ; Hu M; Yao J; Ma L J Craniofac Surg; 2004 Sep; 15(5):725-9. PubMed ID: 15346007 [TBL] [Abstract][Full Text] [Related]
5. [Reconstruction of segmental mandibular defect of canine using titanium-nickel distractor]. Zhou HZ; Hu M; Liu HC; Yao J; Xie M; Xiao HX Zhonghua Kou Qiang Yi Xue Za Zhi; 2003 Sep; 38(5):333-5. PubMed ID: 14680577 [TBL] [Abstract][Full Text] [Related]
6. Continuous mandibular distraction osteogenesis using superelastic shape memory alloy (SMA). Idelsohn S; Peña J; Lacroix D; Planell JA; Gil FJ; Arcas A J Mater Sci Mater Med; 2004 Apr; 15(4):541-6. PubMed ID: 15332632 [TBL] [Abstract][Full Text] [Related]
7. Experimental mandibular regeneration by distraction osteogenesis with submerged devices: preliminary results of a canine model. Rubio-Bueno P; Sanromán F; García P; Sánchez M; Llorens P; Nieto S; Adrados M; Sastre J; de Artiñano FO; Amde S; Naval L; Díaz-González FJ J Craniofac Surg; 2002 Mar; 13(2):224-30. PubMed ID: 12000878 [TBL] [Abstract][Full Text] [Related]
9. [Design and application of internal devices for automatic elasticity distraction osteogenesis]. Zhou HZ; Hu M; Hu KJ; Yao J; Liu HC Hua Xi Kou Qiang Yi Xue Za Zhi; 2005 Oct; 23(5):370-2. PubMed ID: 16285536 [TBL] [Abstract][Full Text] [Related]
10. Inferior alveolar nerve regeneration after bifocal distraction osteogenesis in dogs. Isomura ET; Shogen Y; Hamaguchi M; Harada T; Tanaka N; Kogo M J Oral Maxillofac Surg; 2013 Oct; 71(10):1810.e1-11. PubMed ID: 23871317 [TBL] [Abstract][Full Text] [Related]
11. Primary study of the use of a shape-memory alloy distraction device in the dog mandible for alveolar ridge distraction: determination of osteotomy techniques and evaluation of osteogenesis outcome. Xie M; Xiao H; Hu M; Liu H; Li Y J Oral Maxillofac Surg; 2012 Dec; 70(12):2876-83. PubMed ID: 22632929 [TBL] [Abstract][Full Text] [Related]
12. Nonvascular transport distraction osteogenesis in bone formation and regeneration. Is it an accidental phenomenon? Guo P; Zeng JJ; Zhou N J Craniomaxillofac Surg; 2015 Jan; 43(1):21-7. PubMed ID: 25457741 [TBL] [Abstract][Full Text] [Related]
13. Segmental mandibular reconstruction by microincremental automatic distraction osteogenesis: an animal study. Ayoub AF; Richardson W; Koppel D; Thompson H; Lucas M; Schwarz T; Smith L; Boyd J Br J Oral Maxillofac Surg; 2001 Oct; 39(5):356-64. PubMed ID: 11601816 [TBL] [Abstract][Full Text] [Related]
14. Dynamic Analysis of New Bone Obtained by Nonvascular Transport Distraction Osteogenesis in Canines. Guo P; Zhou N; Lu X; Huang XP; Jiang XF; Wang Y J Oral Maxillofac Surg; 2016 Jan; 74(1):151-61. PubMed ID: 26044605 [TBL] [Abstract][Full Text] [Related]
15. Bone regeneration and docking site healing after bone transport distraction osteogenesis in the canine mandible. Nagashima LK; Rondon-Newby M; Zakhary IE; Nagy WW; Zapata U; Dechow PC; Opperman LA; Elsalanty ME J Oral Maxillofac Surg; 2012 Feb; 70(2):429-39. PubMed ID: 21601342 [TBL] [Abstract][Full Text] [Related]
16. Orthodontic spring guidance of bilateral mandibular distraction in rabbits. Yen SL; Shang W; Shuler C; Yamashita DD Am J Orthod Dentofacial Orthop; 2001 Oct; 120(4):435-42. PubMed ID: 11606970 [TBL] [Abstract][Full Text] [Related]
17. Distraction osteogenesis: the effects of orthodontic tooth movement on distracted mandibular bone. Liou EJ; Polley JW; Figueroa AA J Craniofac Surg; 1998 Nov; 9(6):564-71. PubMed ID: 10029771 [TBL] [Abstract][Full Text] [Related]
18. Distraction osteogenesis of free interpositional membranous bone: experimental design. Cho BC; Lee JH; Baik BS; Liou EJ; Figueroa AA; Cohen M J Craniofac Surg; 1999 Mar; 10(2):123-7; discussion 128. PubMed ID: 10388412 [TBL] [Abstract][Full Text] [Related]
19. Treatment of large bone defects with a novel biological transport disc in non-vascular transport distraction osteogenesis. Zeng JJ; Guo P; Zhou N; Xie QT; Liao FC Int J Oral Maxillofac Surg; 2016 May; 45(5):670-7. PubMed ID: 26792145 [TBL] [Abstract][Full Text] [Related]
20. Dentate transport discs can be used to reconstruct large segmental mandibular defects. Elsalanty ME; Malavia V; Zakhary I; Mulone T; Kontogiorgos ED; Dechow PC; Opperman LA J Oral Maxillofac Surg; 2015 Apr; 73(4):745-58. PubMed ID: 25661502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]