BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17004270)

  • 81. Crystal structures of tRNA-guanine transglycosylase (TGT) in complex with novel and potent inhibitors unravel pronounced induced-fit adaptations and suggest dimer formation upon substrate binding.
    Stengl B; Meyer EA; Heine A; Brenk R; Diederich F; Klebe G
    J Mol Biol; 2007 Jul; 370(3):492-511. PubMed ID: 17524419
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Emerging bacterial enzyme targets.
    Su Z; Honek JF
    Curr Opin Investig Drugs; 2007 Feb; 8(2):140-9. PubMed ID: 17328230
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Pharmacophore modelling of 17beta-HSD1 enzyme based on active inhibitors and enzyme structure.
    Karkola S; Alho-Richmond S; Wahala K
    Mol Cell Endocrinol; 2009 Mar; 301(1-2):225-8. PubMed ID: 18822344
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Macromolecular crystal data phased by negative-stained electron-microscopy reconstructions.
    Trapani S; Schoehn G; Navaza J; Abergel C
    Acta Crystallogr D Biol Crystallogr; 2010 May; 66(Pt 5):514-21. PubMed ID: 20445226
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Designing Irreversible Inhibitors--Worth the Effort?
    González-Bello C
    ChemMedChem; 2016 Jan; 11(1):22-30. PubMed ID: 26593241
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A new potent inhibitor of fungal melanin biosynthesis identified through combinatorial chemistry.
    Jennings LD; Wawrzak Z; Amorose D; Schwartz RS; Jordan DB
    Bioorg Med Chem Lett; 1999 Sep; 9(17):2509-14. PubMed ID: 10498198
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification.
    Ballester PJ; Mangold M; Howard NI; Robinson RL; Abell C; Blumberger J; Mitchell JB
    J R Soc Interface; 2012 Dec; 9(77):3196-207. PubMed ID: 22933186
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Orphan enzymes could be an unexplored reservoir of new drug targets.
    Lespinet O; Labedan B
    Drug Discov Today; 2006 Apr; 11(7-8):300-5. PubMed ID: 16580971
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Mycobacterial crypto-AcpM as a tool to investigate the consequence of drug binding on its key FAS II partner enzyme HadAB.
    Singh BK; Biswas R; Basak A; Das AK
    Biochim Biophys Acta Gen Subj; 2021 Oct; 1865(10):129964. PubMed ID: 34252514
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Vinyl fluoride as an isoelectronic replacement for an enolate anion: inhibition of type II dehydroquinases.
    Frederickson M; Coggins JR; Abell C
    Chem Commun (Camb); 2002 Sep; (17):1886-7. PubMed ID: 12271658
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Riboflavin analogs and inhibitors of riboflavin biosynthesis.
    Mack M; Grill S
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):265-75. PubMed ID: 16607521
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Self-Immolation of a Bacterial Dehydratase Enzyme by its Epoxide Product.
    Lence E; Maneiro M; Sanz-Gaitero M; van Raaij MJ; Thompson P; Hawkins AR; González-Bello C
    Chemistry; 2020 Jun; 26(36):8035-8044. PubMed ID: 32259333
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Theoretical evidence of the existence of a diazafulvene intermediate in the reaction pathway of imidazoleglycerol phosphate dehydratase: design of a novel and potent heterocycle structure for the inhibitor on the basis of the electronic structure-activity relationship study.
    Gohda K; Kimura Y; Mori I; Ohta D; Kikuchi T
    Biochim Biophys Acta; 1998 Jun; 1385(1):107-14. PubMed ID: 9630553
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Mechanistic studies on type I and type II dehydroquinase with (6R)- and (6S)-6-fluoro-3-dehydroquinic acids.
    Parker EJ; González Bello C; Coggins JR; Hawkins AR; Abell C
    Bioorg Med Chem Lett; 2000 Feb; 10(3):231-4. PubMed ID: 10698442
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Discovery of imidazole glycerol phosphate dehydratase inhibitors through 3-D database searching.
    Schweitzer BA; Loida PJ; CaJacob CA; Chott RC; Collantes EM; Hegde SG; Mosier PD; Profeta S
    Bioorg Med Chem Lett; 2002 Jul; 12(13):1743-6. PubMed ID: 12067551
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Letter: Dehydroquinase catalyzed dehydration. II. Identification of the reactive conformation of the substrate responsible for syn elimination.
    Vaz AD; Butler JR; Nugent MJ
    J Am Chem Soc; 1975 Oct; 97(20):5914-5. PubMed ID: 1159247
    [No Abstract]   [Full Text] [Related]  

  • 97. [Effect of several antibiotics on bacterial dehydrases and fumarase].
    JACOBSOHN KP; AZEVEDO MD
    C R Seances Soc Biol Fil; 1954 Oct; 148(19-20):1712-4. PubMed ID: 14365002
    [No Abstract]   [Full Text] [Related]  

  • 98. Selective Inhibition of Type II Dehydroquinases.
    Frederickson M; Parker EJ; Hawkins AR; Coggins JR; Abell C
    J Org Chem; 1999 Apr; 64(8):2612-2613. PubMed ID: 11674325
    [No Abstract]   [Full Text] [Related]  

  • 99. Metatranscriptomic Analyses Reveal the Functional Role of
    Hegyi ÁI; Otto M; Geml J; Hegyi-Kaló J; Kun J; Gyenesei A; Pierneef R; Váczy KZ
    J Fungi (Basel); 2022 Apr; 8(4):. PubMed ID: 35448609
    [No Abstract]   [Full Text] [Related]  

  • 100. Molecular modeling of a series of dehydroquinate dehydratase type II inhibitors of Mycobacterium tuberculosis and design of new binders.
    Miranda PHS; Lourenço EMG; Morais AMS; de Oliveira PIC; Silverio PSSN; Jordão AK; Barbosa EG
    Mol Divers; 2021 Feb; 25(1):1-12. PubMed ID: 31820222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.