These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17004468)

  • 1. Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery.
    Zilany MS; Bruce IC
    J Acoust Soc Am; 2006 Sep; 120(3):1446-66. PubMed ID: 17004468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation of the vowel /epsilon/ in normal and impaired auditory nerve fibers: model predictions of responses in cats.
    Zilany MS; Bruce IC
    J Acoust Soc Am; 2007 Jul; 122(1):402-17. PubMed ID: 17614499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model for the responses of low-frequency auditory-nerve fibers in cat.
    Carney LH
    J Acoust Soc Am; 1993 Jan; 93(1):401-17. PubMed ID: 8423257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide.
    Tan Q; Carney LH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2007-20. PubMed ID: 14587601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of synaptic depression at the hair cell ribbon synapse that support auditory nerve function.
    Goutman JD
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9719-9724. PubMed ID: 28827351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A revised model of the inner-hair cell and auditory-nerve complex.
    Sumner CJ; Lopez-Poveda EA; O'Mard LP; Meddis R
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2178-88. PubMed ID: 12051437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cochlear processes reflected in responses of the cochlear nerve.
    Smith RL
    Acta Otolaryngol; 1985; 100(1-2):1-12. PubMed ID: 2992224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss.
    Heinz MG; Young ED
    J Neurophysiol; 2004 Feb; 91(2):784-95. PubMed ID: 14534289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-frequency bias tone suppression of auditory-nerve responses to low-level clicks and tones.
    Nam H; Guinan JJ
    Hear Res; 2016 Nov; 341():66-78. PubMed ID: 27550413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of the activation of the inner-hair-cell basolateral K
    Altoè A; Pulkki V; Verhulst S
    Hear Res; 2018 Jul; 364():68-80. PubMed ID: 29678326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory-nerve rate responses are inconsistent with common hypotheses for the neural correlates of loudness recruitment.
    Heinz MG; Issa JB; Young ED
    J Assoc Res Otolaryngol; 2005 Jun; 6(2):91-105. PubMed ID: 15952047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites.
    Bruce IC; Erfani Y; Zilany MSA
    Hear Res; 2018 Mar; 360():40-54. PubMed ID: 29395616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses.
    Bruce IC; Sachs MB; Young ED
    J Acoust Soc Am; 2003 Jan; 113(1):369-88. PubMed ID: 12558276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of models for the synapse between the inner hair cell and the auditory nerve.
    Zhang X; Carney LH
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1540-53. PubMed ID: 16240815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Updated parameters and expanded simulation options for a model of the auditory periphery.
    Zilany MS; Bruce IC; Carney LH
    J Acoust Soc Am; 2014 Jan; 135(1):283-6. PubMed ID: 24437768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The temporal representation of speech in a nonlinear model of the guinea pig cochlea.
    Holmes SD; Sumner CJ; O'Mard LP; Meddis R
    J Acoust Soc Am; 2004 Dec; 116(6):3534-45. PubMed ID: 15658705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonlinear filter-bank model of the guinea-pig cochlear nerve: rate responses.
    Sumner CJ; O'Mard LP; Lopez-Poveda EA; Meddis R
    J Acoust Soc Am; 2003 Jun; 113(6):3264-74. PubMed ID: 12822799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics.
    Zilany MS; Bruce IC; Nelson PC; Carney LH
    J Acoust Soc Am; 2009 Nov; 126(5):2390-412. PubMed ID: 19894822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A composite model of the auditory periphery for simulating responses to complex sounds.
    Robert A; Eriksson JL
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):1852-64. PubMed ID: 10530011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression.
    Zhang X; Heinz MG; Bruce IC; Carney LH
    J Acoust Soc Am; 2001 Feb; 109(2):648-70. PubMed ID: 11248971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.