These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
537 related articles for article (PubMed ID: 17004778)
1. Single lanthanide-doped oxide nanoparticles as donors in fluorescence resonance energy transfer experiments. Casanova D; Giaume D; Gacoin T; Boilot JP; Alexandrou A J Phys Chem B; 2006 Oct; 110(39):19264-70. PubMed ID: 17004778 [TBL] [Abstract][Full Text] [Related]
2. Photon upconversion in homogeneous fluorescence-based bioanalytical assays. Soukka T; Rantanen T; Kuningas K Ann N Y Acad Sci; 2008; 1130():188-200. PubMed ID: 18596348 [TBL] [Abstract][Full Text] [Related]
3. Wrapping nanocrystals with an amphiphilic polymer preloaded with fixed amounts of fluorophore generates FRET-based nanoprobes with a controlled donor/acceptor ratio. Yakovlev AV; Zhang F; Zulqurnain A; Azhar-Zahoor A; Luccardini C; Gaillard S; Mallet JM; Tauc P; Brochon JC; Parak WJ; Feltz A; Oheim M Langmuir; 2009 Mar; 25(5):3232-9. PubMed ID: 19437725 [TBL] [Abstract][Full Text] [Related]
4. Luminescence resonance energy transfer sensors based on the assemblies of oppositely charged lanthanide/gold nanoparticles in aqueous solution. Gu JQ; Sun LD; Yan ZG; Yan CH Chem Asian J; 2008 Oct; 3(10):1857-64. PubMed ID: 18726878 [TBL] [Abstract][Full Text] [Related]
5. Origin of simultaneous donor-acceptor emission in single molecules of peryleneimide-terrylenediimide labeled polyphenylene dendrimers. Melnikov SM; Yeow EK; Uji-i H; Cotlet M; Müllen K; De Schryver FC; Enderlein J; Hofkens J J Phys Chem B; 2007 Feb; 111(4):708-19. PubMed ID: 17249814 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193 [TBL] [Abstract][Full Text] [Related]
7. Homogeneous assay based on anti-Stokes' shift time-resolved fluorescence resonance energy-transfer measurement. Laitala V; Hemmilä I Anal Chem; 2005 Mar; 77(5):1483-7. PubMed ID: 15732934 [TBL] [Abstract][Full Text] [Related]
8. Long time scale blinking kinetics of cyanine fluorophores conjugated to DNA and its effect on Förster resonance energy transfer. Sabanayagam CR; Eid JS; Meller A J Chem Phys; 2005 Dec; 123(22):224708. PubMed ID: 16375496 [TBL] [Abstract][Full Text] [Related]
9. Europium(III)-chelates embedded in nanoparticles are protected from interfering compounds present in assay media. Kokko L; Lövgren T; Soukka T Anal Chim Acta; 2007 Feb; 585(1):17-23. PubMed ID: 17386642 [TBL] [Abstract][Full Text] [Related]
10. Amplified energy transfer in conjugated polymer nanoparticle tags and sensors. Tian Z; Yu J; Wu C; Szymanski C; McNeill J Nanoscale; 2010 Oct; 2(10):1999-2011. PubMed ID: 20697652 [TBL] [Abstract][Full Text] [Related]
11. A study of the compartmentalization of core-shell nanoparticles through fluorescence energy transfer of dopants. Chávez JL; Jiang H; Duran RS Nanotechnology; 2010 Feb; 21(5):055703. PubMed ID: 20023306 [TBL] [Abstract][Full Text] [Related]
12. Improving lanthanide-based resonance energy transfer detection by increasing donor-acceptor distances. Vogel KW; Vedvik KL J Biomol Screen; 2006 Jun; 11(4):439-43. PubMed ID: 16751339 [TBL] [Abstract][Full Text] [Related]
13. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles. Wang M; Hou W; Mi CC; Wang WX; Xu ZR; Teng HH; Mao CB; Xu SK Anal Chem; 2009 Nov; 81(21):8783-9. PubMed ID: 19807113 [TBL] [Abstract][Full Text] [Related]
14. Counting the number of proteins coupled to single nanoparticles. Casanova D; Giaume D; Moreau M; Martin JL; Gacoin T; Boilot JP; Alexandrou A J Am Chem Soc; 2007 Oct; 129(42):12592-3. PubMed ID: 17902659 [No Abstract] [Full Text] [Related]
15. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Lu H; Schöps O; Woggon U; Niemeyer CM J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019 [TBL] [Abstract][Full Text] [Related]
17. Application of a lanthanide composite nanoparticle-sensitized luminescence method for the determination of salicylic acid in pharmaceutical formulations and human plasma. Karim MM; Alam SM; Lee SH Luminescence; 2008; 23(6):417-23. PubMed ID: 18816464 [TBL] [Abstract][Full Text] [Related]
18. Spectral identification of specific photophysics of cy5 by means of ensemble and single molecule measurements. Huang Z; Ji D; Wang S; Xia A; Koberling F; Patting M; Erdmann R J Phys Chem A; 2006 Jan; 110(1):45-50. PubMed ID: 16392838 [TBL] [Abstract][Full Text] [Related]
19. An efficient fluorescence resonance energy transfer (FRET) between pyrene and perylene assembled in a DNA duplex and its potential for discriminating single-base changes. Kashida H; Takatsu T; Sekiguchi K; Asanuma H Chemistry; 2010 Feb; 16(8):2479-86. PubMed ID: 20066689 [TBL] [Abstract][Full Text] [Related]
20. A dual-step fluorescence resonance energy transfer-based quenching assay for screening of caspase-3 inhibitors. Valanne A; Malmi P; Appelblom H; Niemelä P; Soukka T Anal Biochem; 2008 Apr; 375(1):71-81. PubMed ID: 18211811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]