These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17004786)

  • 1. High-temperature seedless synthesis of gold nanorods.
    Zijlstra P; Bullen C; Chon JW; Gu M
    J Phys Chem B; 2006 Oct; 110(39):19315-8. PubMed ID: 17004786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.
    Singh DP; Polychronopoulou K; Rebholz C; Aouadi SM
    Nanotechnology; 2010 Aug; 21(32):325601. PubMed ID: 20639583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms.
    Menagen G; Macdonald JE; Shemesh Y; Popov I; Banin U
    J Am Chem Soc; 2009 Dec; 131(47):17406-11. PubMed ID: 19894717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and activation parameter analysis for the prebiotic oligocytidylate formation on Na(+)-montmorillonite at 0-100 degrees C.
    Kawamura K; Maeda J
    J Phys Chem A; 2008 Sep; 112(35):8015-23. PubMed ID: 18693705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring gold nanorod synthesis by localized surface plasmon resonance.
    Gulati A; Liao H; Hafner JH
    J Phys Chem B; 2006 Nov; 110(45):22323-7. PubMed ID: 17091971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural evolution of gold nanorods during controlled secondary growth.
    Keul HA; Möller M; Bockstaller MR
    Langmuir; 2007 Sep; 23(20):10307-15. PubMed ID: 17713936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and optical properties of small Au nanorods using a seedless growth technique.
    Ali MR; Snyder B; El-Sayed MA
    Langmuir; 2012 Jun; 28(25):9807-15. PubMed ID: 22620850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of hybrid CdS-Au colloidal nanostructures.
    Saunders AE; Popov I; Banin U
    J Phys Chem B; 2006 Dec; 110(50):25421-9. PubMed ID: 17165989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast studies of gold, nickel, and palladium nanorods.
    Sando GM; Berry AD; Owrutsky JC
    J Chem Phys; 2007 Aug; 127(7):074705. PubMed ID: 17718625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step synthesis of large-aspect-ratio single-crystalline gold nanorods by using CTPAB and CTBAB surfactants.
    Kou X; Zhang S; Tsung CK; Yang Z; Yeung MH; Stucky GD; Sun L; Wang J; Yan C
    Chemistry; 2007; 13(10):2929-36. PubMed ID: 17183599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer.
    Alkilany AM; Frey RL; Ferry JL; Murphy CJ
    Langmuir; 2008 Sep; 24(18):10235-9. PubMed ID: 18700748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst.
    Huang PX; Wu F; Zhu BL; Gao XP; Zhu HY; Yan TY; Huang WP; Wu SH; Song DY
    J Phys Chem B; 2005 Oct; 109(41):19169-74. PubMed ID: 16853472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature growth of ZnO nanorods by chemical bath deposition.
    Yi SH; Choi SK; Jang JM; Kim JA; Jung WG
    J Colloid Interface Sci; 2007 Sep; 313(2):705-10. PubMed ID: 17570384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments.
    Burrows ND; Harvey S; Idesis FA; Murphy CJ
    Langmuir; 2017 Feb; 33(8):1891-1907. PubMed ID: 27983861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH controlled synthesis of high aspect-ratio gold nanorods.
    Wei Q; Ji J; Shen J
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5708-14. PubMed ID: 19198293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles.
    Okitsu K; Sharyo K; Nishimura R
    Langmuir; 2009 Jul; 25(14):7786-90. PubMed ID: 19545140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot synthesis of gold nanorods using binary surfactant systems with improved monodispersity, dimensional tunability and plasmon resonance scattering properties.
    Lai J; Zhang L; Niu W; Qi W; Zhao J; Liu Z; Zhang W; Xu G
    Nanotechnology; 2014 Mar; 25(12):125601. PubMed ID: 24571958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of gold nanorods and bipyramids using CTEAB surfactant.
    Kou X; Zhang S; Tsung CK; Yeung MH; Shi Q; Stucky GD; Sun L; Wang J; Yan C
    J Phys Chem B; 2006 Aug; 110(33):16377-83. PubMed ID: 16913766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short gold nanorod growth revisited: the critical role of the bromide counterion.
    Si S; Leduc C; Delville MH; Lounis B
    Chemphyschem; 2012 Jan; 13(1):193-202. PubMed ID: 22162413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating.
    Xiang Y; Wu X; Liu D; Li Z; Chu W; Feng L; Zhang K; Zhou W; Xie S
    Langmuir; 2008 Apr; 24(7):3465-70. PubMed ID: 18294010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.