These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 17004829)

  • 1. Origin of the dynamic transition upon pressurization of crystalline proteins.
    Oleinikova A; Smolin N; Brovchenko I
    J Phys Chem B; 2006 Oct; 110(39):19619-24. PubMed ID: 17004829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal breaking of spanning water networks in the hydration shell of proteins.
    Brovchenko I; Krukau A; Smolin N; Oleinikova A; Geiger A; Winter R
    J Chem Phys; 2005 Dec; 123(22):224905. PubMed ID: 16375508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of spanning water networks on protein surfaces via 2D percolation transition.
    Oleinikova A; Smolin N; Brovchenko I; Geiger A; Winter R
    J Phys Chem B; 2005 Feb; 109(5):1988-98. PubMed ID: 16851183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: a molecular dynamics computer simulation study.
    Smolin N; Winter R
    J Phys Chem B; 2008 Jan; 112(3):997-1006. PubMed ID: 18171045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of spanning water networks at protein surfaces.
    Smolin N; Oleinikova A; Brovchenko I; Geiger A; Winter R
    J Phys Chem B; 2005 Jun; 109(21):10995-1005. PubMed ID: 16852340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration-dependent protein dynamics revealed by molecular dynamics simulation of crystalline staphylococcal nuclease.
    Joti Y; Nakagawa H; Kataoka M; Kitao A
    J Phys Chem B; 2008 Mar; 112(11):3522-8. PubMed ID: 18293961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical analysis on hydration thermodynamics of proteins.
    Imai T; Harano Y; Kinoshita M; Kovalenko A; Hirata F
    J Chem Phys; 2006 Jul; 125(2):24911. PubMed ID: 16848615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical analysis on changes in thermodynamic quantities upon protein folding: essential role of hydration.
    Imai T; Harano Y; Kinoshita M; Kovalenko A; Hirata F
    J Chem Phys; 2007 Jun; 126(22):225102. PubMed ID: 17581082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Which properties of a spanning network of hydration water enable biological functions?
    Brovchenko I; Oleinikova A
    Chemphyschem; 2008 Dec; 9(18):2695-702. PubMed ID: 19035367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of hydration shells of protein molecules at their pressure- and temperature-induced native-denatured transition.
    Danielewicz-Ferchmin I; Banachowicz EM; Ferchmin AR
    Chemphyschem; 2006 Oct; 7(10):2126-33. PubMed ID: 16955512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen-bond dynamics in the air-water interface.
    Liu P; Harder E; Berne BJ
    J Phys Chem B; 2005 Feb; 109(7):2949-55. PubMed ID: 16851308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-bonded network of hydration water around model solutes.
    Oleinikova A; Brovchenko I
    Phys Chem Chem Phys; 2012 Apr; 14(16):5686-94. PubMed ID: 22421806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal stability of the hydrogen-bonded water network in the hydration shell of islet amyloid polypeptide.
    Brovchenko I; Andrews MN; Oleinikova A
    J Phys Condens Matter; 2011 Apr; 23(15):155105. PubMed ID: 21451234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of protein surface hydration shell free energy of water motion: theoretical study and molecular dynamics simulation.
    Sheu SY; Yang DY
    J Phys Chem B; 2010 Dec; 114(49):16558-66. PubMed ID: 21090707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a quantitative understanding of protein hydration and volumetric properties.
    Mitra L; Rouget JB; Garcia-Moreno B; Royer CA; Winter R
    Chemphyschem; 2008 Dec; 9(18):2715-21. PubMed ID: 18814170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical aspects of the weakly hydrated protein surface.
    Careri G; Peyrard M
    Cell Mol Biol (Noisy-le-grand); 2001 Jul; 47(5):745-56. PubMed ID: 11728090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How protein surfaces induce anomalous dynamics of hydration water.
    Pizzitutti F; Marchi M; Sterpone F; Rossky PJ
    J Phys Chem B; 2007 Jul; 111(26):7584-90. PubMed ID: 17564431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric studies of water clusters in cyclodextrins: Relevance to the transition between slow and fast forms of thrombin.
    Bone S
    J Phys Chem B; 2006 Oct; 110(41):20609-14. PubMed ID: 17034250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling between hydration layer dynamics and unfolding kinetics of HP-36.
    Bandyopadhyay S; Chakraborty S; Bagchi B
    J Chem Phys; 2006 Aug; 125(8):084912. PubMed ID: 16965062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.