BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17005125)

  • 21. A rare protein fluorescence behavior where the emission is dominated by tyrosine: case of the 33-kDa protein from spinach photosystem II.
    Ruan K; Li J; Liang R; Xu C; Yu Y; Lange R; Balny C
    Biochem Biophys Res Commun; 2002 Apr; 293(1):593-7. PubMed ID: 12054643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency-domain fluorescence studies of an extracellular metalloproteinase of Staphylococcus aureus.
    Wasylewski Z; Eftink MR
    Biochim Biophys Acta; 1987 Oct; 915(3):331-41. PubMed ID: 3115297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fourth-derivative spectrophotometry analysis of tryptophan environment in proteins. Application to melittin, cytochrome c and bacteriorhodopsin.
    Duñach M; Sabés M; Padrós E
    Eur J Biochem; 1983 Jul; 134(1):123-8. PubMed ID: 6305654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system.
    Dijkstra DS; Broos J; Lolkema JS; Enequist H; Minke W; Robillard GT
    Biochemistry; 1996 May; 35(21):6628-34. PubMed ID: 8639611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new component in protein fluorescence.
    Longworth JW
    Ann N Y Acad Sci; 1981; 366():237-45. PubMed ID: 6942747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence of aromatic amino acids in a pyridoxal phosphate enzyme: aspartate aminotransferase.
    Arrio-Dupont M
    Eur J Biochem; 1978 Nov; 91(2):369-78. PubMed ID: 729576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Spectral properties of porcine plasminogen: study of the acidic transition (author's transl)].
    Rodier F
    Eur J Biochem; 1976 Apr; 63(2):553-62. PubMed ID: 4326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of a light-induced pH gradient on purple-to-blue and purple-to-red transitions of bacteriorhodopsin.
    Nasuda-Kouyama A; Fukuda K; Iio T; Kouyama T
    Biochemistry; 1990 Jul; 29(29):6778-88. PubMed ID: 2168741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence-quenching-resolved spectra of melittin in lipid bilayers.
    Kaszycki P; Wasylewski Z
    Biochim Biophys Acta; 1990 Sep; 1040(3):337-45. PubMed ID: 2223839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Second derivative fluorescence spectra of indole compounds.
    Nayar S; Brahma A; Mukherjee C; Bhattacharyya D
    J Biochem; 2002 Mar; 131(3):427-35. PubMed ID: 11872172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of genetic modification of tyrosine-185 on the proton pump and the blue-to-purple transition in bacteriorhodopsin.
    Jang DJ; el-Sayed MA; Stern LJ; Mogi T; Khorana HG
    Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4103-7. PubMed ID: 2349220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral heterogeneity in protein fluorescence of bacteriorhodopsin: evidence for intraprotein aqueous regions.
    Plotkin BJ; Sherman WV
    Biochemistry; 1984 Oct; 23(22):5353-60. PubMed ID: 6391541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat-induced conformational changes of TET peptidase from crenarchaeon Desulfurococcus kamchatkensis.
    Slutskaya E; Artemova N; Kleymenov S; Petrova T; Popov V
    Eur Biophys J; 2015 Dec; 44(8):667-75. PubMed ID: 26219412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence and circular dichroism studies on the accessibility of tryptophan residues and unfolding of a jacalin-related α-d-galactose-specific lectin from mulberry (Morus indica).
    Datta D; J Swamy M
    J Photochem Photobiol B; 2017 May; 170():108-117. PubMed ID: 28414980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus.
    Raja SM; Rawat SS; Chattopadhyay A; Lala AK
    Biophys J; 1999 Mar; 76(3):1469-79. PubMed ID: 10049328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multitryptophan-fluorescence-emission decay of beta-glycosidase from the extremely thermophilic archaeon Sulfolobus solfataricus.
    Bismuto E; Irace G; D'Auria S; Rossi M; Nucci R
    Eur J Biochem; 1997 Feb; 244(1):53-8. PubMed ID: 9063445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alteration of tryptophan fluorescence properties upon dissociation of Lumbricus terrestris hemoglobin.
    Hirsch RE; Vidugiris GJ; Friedman JM; Harrington JP
    Biochim Biophys Acta; 1994 Apr; 1205(2):248-51. PubMed ID: 8155704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence properties of native and photooxidised proteinase K: the X-ray model in the region of the two tryptophans.
    Dolashka P; Dimov I; Genov N; Svendsen I; Wilson KS; Betzel C
    Biochim Biophys Acta; 1992 Feb; 1118(3):303-12. PubMed ID: 1737054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of temperature and pH on the environment of tryptophan residues in alpha-actinin].
    Permiakov EA; Tskhovrebova LA
    Biofizika; 1988; 33(5):754-7. PubMed ID: 3224101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shielding of tryptophan residues of avidin by the binding of biotin.
    Kurzban GP; Gitlin G; Bayer EA; Wilchek M; Horowitz PM
    Biochemistry; 1989 Oct; 28(21):8537-42. PubMed ID: 2605203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.