These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17005125)

  • 61. Temperature and pressure dependence of azurin stability as monitored by tryptophan fluorescence and phosphorescence. The case of F29A mutant.
    Tognotti D; Gabellieri E; Morelli E; Cioni P
    Biophys Chem; 2013 Dec; 182():44-50. PubMed ID: 23816248
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tryptophan fluorescence in electron-transfer flavoprotein:ubiquinone oxidoreductase: fluorescence quenching by a brominated pseudosubstrate.
    Watmough NJ; Loehr JP; Drake SK; Frerman FE
    Biochemistry; 1991 Feb; 30(5):1317-23. PubMed ID: 1991113
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Natural fluorescence properties of brome mosaic virus protein.
    Herzog M; Gerard D; Hirth L; Laustriat G
    Biochim Biophys Acta; 1977 Jul; 493(1):167-77. PubMed ID: 880311
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Interactions of alpha-lactalbumins with lipid vesicles studied by tryptophan fluorescence.
    Grishchenko VM; Kalinichenko LP; Deikus GY; Veprintsev DB; Cawthern KM; Berliner LJ; Permyakov EA
    Biochem Mol Biol Int; 1996 Mar; 38(3):453-66. PubMed ID: 8829604
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Thermal activation of the bovine Hsc70 molecular chaperone at physiological temperatures: physical evidence of a molecular thermometer.
    Leung SM; Senisterra G; Ritchie KP; Sadis SE; Lepock JR; Hightower LE
    Cell Stress Chaperones; 1996 Apr; 1(1):78-89. PubMed ID: 9222592
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of membrane lipids on the photochemistry of bacteriorhodopsin in the purple membrane of Halobacterium halobium.
    Sherman WV; Caplan SR
    Biochim Biophys Acta; 1978 May; 502(2):222-31. PubMed ID: 580766
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The intrinsic fluorescence characteristics of sarcoplasmic reticulum membranes.
    Ferretti G; Falcioni AM; Curatola G; Korkzak B
    Boll Soc Ital Biol Sper; 1982 Jul; 58(14):876-81. PubMed ID: 7126361
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nonpolar environment of tryptophans in erythrocyte water channel CHIP28 determined by fluorescence quenching.
    Farinas J; Van Hoek AN; Shi LB; Erickson C; Verkman AS
    Biochemistry; 1993 Nov; 32(44):11857-64. PubMed ID: 8218257
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nanosecond dynamics of horse heart apocytochrome c in aqueous solution as studied by time-resolved fluorescence of the single tryptophan residue (Trp-59).
    Vincent M; Brochon JC; Merola F; Jordi W; Gallay J
    Biochemistry; 1988 Nov; 27(24):8752-61. PubMed ID: 2853969
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Temperature-dependent conformational change of bacteriorhodopsin as studied by solid-state 13C NMR.
    Tuzi S; Naito A; Saitô H
    Eur J Biochem; 1996 Jul; 239(2):294-301. PubMed ID: 8706732
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A low temperature investigation of the intermediates of the photocycle of light-adapted bacteriorhodopsin. Optical absorption and fluorescence measurements.
    Kriebel AN; Gillbro T; Wild UP
    Biochim Biophys Acta; 1979 Apr; 546(1):106-20. PubMed ID: 444490
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functional and conformational transitions of mevalonate diphosphate decarboxylase from Bacopa monniera.
    Abbassi S; Patel K; Khan B; Bhosale S; Gaikwad S
    Int J Biol Macromol; 2016 Feb; 83():160-70. PubMed ID: 26657583
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The identification of tryptophan residues responsible for ATP-induced increase in intrinsic fluorescence of myosin subfragment 1.
    Reshetnyak YK; Andreev OA; Borejdo J; Toptygin DD; Brand L; Burstein EA
    J Biomol Struct Dyn; 2000 Aug; 18(1):113-25. PubMed ID: 11021656
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Thermal transitions in the purple membrane from Halobacterium halobium.
    Shnyrov VL; Mateo PL
    FEBS Lett; 1993 Jun; 324(2):237-40. PubMed ID: 8508927
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes.
    Saleh MT; Ferguson J; Boggs JM; Gariépy J
    Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structure and thermal stability of monomeric bacteriorhodopsin in mixed phospholipid/detergent micelles.
    Brouillette CG; McMichens RB; Stern LJ; Khorana HG
    Proteins; 1989; 5(1):38-46. PubMed ID: 2748571
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Lipid binding of the exchangeable apolipoprotein apolipophorin III induces major changes in fluorescence properties of tryptophans 115 and 130.
    Weers PM; Prenner EJ; Kay C; Ryan RO
    Biochemistry; 2000 Jun; 39(23):6874-80. PubMed ID: 10841768
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Unusual fluorescence of W168 in Plasmodium falciparum triosephosphate isomerase, probed by single-tryptophan mutants.
    Pattanaik P; Ravindra G; Sengupta C; Maithal K; Balaram P; Balaram H
    Eur J Biochem; 2003 Feb; 270(4):745-56. PubMed ID: 12581214
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structural and dynamic aspects of beta-glycosidase from mesophilic and thermophilic bacteria by multitryptophanyl emission decay studies.
    Bismuto E; Nucci R; Rossi M; Irace G
    Proteins; 1999 May; 35(2):163-72. PubMed ID: 10223289
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization of a partially folded intermediate of papain induced by fluorinated alcohols at low pH.
    Naeem A; Khan KA; Khan RH
    Arch Biochem Biophys; 2004 Dec; 432(1):79-87. PubMed ID: 15519299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.