BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17005130)

  • 1. Time-dependent rotational rates of excited fluorophores. A linkage between fluorescence depolarization and solvent relaxation.
    Lakowicz JR
    Biophys Chem; 1984 Jan; 19(1):13-23. PubMed ID: 17005130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotational reorientation dynamics of oxazine 750 in polar solvents.
    Zhou P; Song P; Liu J; Shi Y; Han K; He G
    J Phys Chem A; 2008 Apr; 112(16):3646-55. PubMed ID: 18363391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red-edge excitation of fluorescence and dynamic properties of proteins and membranes.
    Lakowicz JR; Keating-Nakamoto S
    Biochemistry; 1984 Jun; 23(13):3013-21. PubMed ID: 6466628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural features in ethanol-water mixtures revealed by picosecond fluorescence anisotropy.
    Beddard GS; Doust T; Hudales J
    Nature; 1981 Nov; 294(5837):145-146. PubMed ID: 29451267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic depolarization of interacting fluorophores. Effect of internal rotation and energy transfer.
    Tanaka F; Mataga N
    Biophys J; 1982 Aug; 39(2):129-40. PubMed ID: 7115879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of excited-state processes by phase-modulation fluorescence spectroscopy.
    Lakowicz JR; Balter A
    Biophys Chem; 1982 Oct; 16(2):117-32. PubMed ID: 7139044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-dependent changes in molecular reorientation dynamics: the role of solvent-solvent interactions.
    Hay CE; Marken F; Blanchard GJ
    J Phys Chem A; 2010 Apr; 114(14):4957-62. PubMed ID: 20235544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientational exchange approach to fluorescence anisotropy decay.
    Piston DW; Gratton E
    Biophys J; 1989 Dec; 56(6):1083-91. PubMed ID: 2611325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of laurdan sensitivity to the vesicle-to-micelle transition of phospholipid-octylglucoside system: a time-resolved fluorescence study.
    Viard M; Gallay J; Vincent M; Paternostre M
    Biophys J; 2001 Jan; 80(1):347-59. PubMed ID: 11159407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanosecond fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles with regard to isotropic solvents.
    Vincent M; de Foresta B; Gallay J; Alfsen A
    Biochemistry; 1982 Feb; 21(4):708-16. PubMed ID: 6896158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence response from the surface states of nitrogen-doped carbon nanodots: evidence of a heterogeneous population of molecular-sized fluorophores.
    Basu N; Mandal D
    Photochem Photobiol Sci; 2019 Jan; 18(1):54-63. PubMed ID: 30289134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical study of the rotational reorientation dynamics of 7-aminocoumarin derivatives in polar solvents: hydrogen-bonding effects.
    Zhou P; Song P; Liu J; Han K; He G
    Phys Chem Chem Phys; 2009 Nov; 11(41):9440-9. PubMed ID: 19830327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarized fluorescence correlation spectroscopy of DNA-DAPI complexes.
    Barcellona ML; Gammon S; Hazlett T; Digman MA; Gratton E
    Microsc Res Tech; 2004 Nov; 65(4-5):205-17. PubMed ID: 15630690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of restricted rotational diffusion of fluorescent lipids in supported planar phospholipid monolayers using angle-dependent polarized fluorescence photobleaching recovery.
    Timbs MM; Thompson NL
    Biopolymers; 1993 Jan; 33(1):45-57. PubMed ID: 8427938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of two-photon induced fluorescence anisotropy decay in membranes.
    Chen SY; Van Der Meer BW
    Biophys J; 1993 May; 64(5):1567-75. PubMed ID: 19431897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach.
    Chattopadhyay A
    Chem Phys Lipids; 2003 Jan; 122(1-2):3-17. PubMed ID: 12598034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photophysics and photodynamics of Pyronin Y in n-alcohols.
    Beşer BM; Onganer Y; Arik M
    Luminescence; 2018 Dec; 33(8):1394-1400. PubMed ID: 30403000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nanosize micelles of ionic and neutral surfactants on the photophysics of protonated 6-methoxyquinoline: time-resolved fluorescence study.
    Tej Varma Y; Joshi S; Pant DD
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():818-26. PubMed ID: 25434640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence quenching dynamics of tryptophan in proteins. Effect of internal rotation under potential barrier.
    Tanaka F; Mataga N
    Biophys J; 1987 Mar; 51(3):487-95. PubMed ID: 3032294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonstationary rotational diffusion in room temperature liquids measured by femtosecond three-pulse transient anisotropy.
    Gaab KM; Bardeen CJ
    Phys Rev Lett; 2004 Jul; 93(5):056001. PubMed ID: 15323712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.