These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17005145)

  • 1. Effect of ligand binding and conformational changes in proteins on oxygen quenching and fluorescence depolarization of tryptophan residues.
    Maliwal BP; Lakowicz JR
    Biophys Chem; 1984 Jun; 19(4):337-44. PubMed ID: 17005145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins.
    Lakowicz JR; Maliwal BP
    J Biol Chem; 1983 Apr; 258(8):4794-801. PubMed ID: 6833277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural fluctuations in aspartate transcarbamylase. Succinimide quenching and fluorescence depolarization of tryptophan and tyrosine residues.
    Maliwal BP; Allewell NM; Lakowicz JR
    Biophys Chem; 1984 Oct; 20(3):209-16. PubMed ID: 6388653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosecond motions of the single tryptophan residues in apolipoproteins C-I and C-II: a study by oxygen quenching and fluorescence depolarization.
    Maliwal BP; Cardin AD; Jackson RL; Lakowicz JR
    Arch Biochem Biophys; 1985 Jan; 236(1):370-8. PubMed ID: 3966801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropies.
    Lakowicz JR; Freshwater G; Weber G
    Biophys J; 1980 Oct; 32(1):591-601. PubMed ID: 7248463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand binding and protein dynamics: a fluorescence depolarization study of aspartate transcarbamylase from Escherichia coli.
    Royer CA; Tauc P; Hervé G; Brochon JC
    Biochemistry; 1987 Oct; 26(20):6472-8. PubMed ID: 3322381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotational freedom of tryptophan residues in proteins and peptides.
    Lakowicz JR; Maliwal BP; Cherek H; Balter A
    Biochemistry; 1983 Apr; 22(8):1741-52. PubMed ID: 6849881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of glucose and magnesium ion on the quenching of yeast hexokinase fluorescence by acrylamide.
    Feldman I; Norton GE
    Biochim Biophys Acta; 1980 Sep; 615(1):132-42. PubMed ID: 7000190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies.
    Maity H; Jarori GK
    Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92.
    Hogue CW; Doublié S; Xue H; Wong JT; Carter CW; Szabo AG
    J Mol Biol; 1996 Jul; 260(3):446-66. PubMed ID: 8757806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal motion of lysozyme studied by time-resolved fluorescence depolarization of tryptophan residues.
    Nishimoto E; Yamashita S; Szabo AG; Imoto T
    Biochemistry; 1998 Apr; 37(16):5599-607. PubMed ID: 9548945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-dependent conformational equilibria of serum albumin revealed by tryptophan fluorescence quenching.
    Chadborn N; Bryant J; Bain AJ; O'Shea P
    Biophys J; 1999 Apr; 76(4):2198-207. PubMed ID: 10096914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quenching of tryptophan fluorescence in various proteins by a series of small nickel complexes.
    Crouse HF; Potoma J; Nejrabi F; Snyder DL; Chohan BS; Basu S
    Dalton Trans; 2012 Mar; 41(9):2720-31. PubMed ID: 22249654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan residues at subunit interfaces used as fluorescence probes to investigate homotropic and heterotropic regulation of aspartate transcarbamylase.
    Fetler L; Tauc P; Hervé G; Cunin R; Brochon JC
    Biochemistry; 2001 Jul; 40(30):8773-82. PubMed ID: 11467937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational dynamics of DnaB helicase upon DNA and nucleotide binding: analysis by intrinsic tryptophan fluorescence quenching.
    Flowers S; Biswas EE; Biswas SB
    Biochemistry; 2003 Feb; 42(7):1910-21. PubMed ID: 12590577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence quenching of tryptophan by trifluoroacetamide.
    Midoux P; Wahl P; Auchet JC; Monsigny M
    Biochim Biophys Acta; 1984 Sep; 801(1):16-25. PubMed ID: 6547860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subnanosecond motions of tryptophan residues in proteins.
    Munro I; Pecht I; Stryer L
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):56-60. PubMed ID: 284374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence depolarization of tryptophan residues in proteins: a molecular dynamics study.
    Ichiye T; Karplus M
    Biochemistry; 1983 Jun; 22(12):2884-93. PubMed ID: 6871168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling.
    Gelamo EL; Silva CH; Imasato H; Tabak M
    Biochim Biophys Acta; 2002 Jan; 1594(1):84-99. PubMed ID: 11825611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic fluorescence spectroscopy on single tryptophan mutants of EII(mtl) in detergent micelles. Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay.
    Dijkstra DS; Broos J; Visser AJ; van Hoek A; Robillard GT
    Biochemistry; 1997 Apr; 36(16):4860-6. PubMed ID: 9125506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.