These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 17005192)
41. The ecology of Bacillus thuringiensis on the Phylloplane: colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae. Bizzarri MF; Bishop AH Microb Ecol; 2008 Jul; 56(1):133-9. PubMed ID: 17973155 [TBL] [Abstract][Full Text] [Related]
42. Characterization of Mexican Bacillus thuringiensis strains toxic for lepidopteran and coleopteran larvae. Tamez-Guerra P; Iracheta MM; Pereyra-Alférez B; Galán-Wong LJ; Gomez-Flores R; Tamez-Guerra RS; Rodríguez-Padilla C J Invertebr Pathol; 2004; 86(1-2):7-18. PubMed ID: 15145246 [TBL] [Abstract][Full Text] [Related]
43. Disruption of Ha_BtR alters binding of Bacillus thuringiensis delta-endotoxin Cry1Ac to midgut BBMVs of Helicoverpa armigera. Xu X; Wu Y J Invertebr Pathol; 2008 Jan; 97(1):27-32. PubMed ID: 17681529 [TBL] [Abstract][Full Text] [Related]
44. Toxicity of Bacillus thuringiensis delta-endotoxins against bean shoot borer (Epinotia aporema Wals.) larvae, a major soybean pest in Argentina. Sauka DH; Sánchez J; Bravo A; Benintende GB J Invertebr Pathol; 2007 Feb; 94(2):125-9. PubMed ID: 17069845 [TBL] [Abstract][Full Text] [Related]
45. [Co-expression of crystal protein gene cry26Aa and cry28Aa has an ability to form parasporal crystal inside exosporium in Bacillus thuringiensis subsp. finitimus]. Zhang R; Zhao CM; Yu ZN; Sun M Wei Sheng Wu Xue Bao; 2005 Dec; 45(6):955-8. PubMed ID: 16496711 [TBL] [Abstract][Full Text] [Related]
46. Carboxy-terminal half of Cry1C can help vegetative insecticidal protein to form inclusion bodies in the mother cell of Bacillus thuringiensis. Song R; Peng D; Yu Z; Sun M Appl Microbiol Biotechnol; 2008 Sep; 80(4):647-54. PubMed ID: 18685842 [TBL] [Abstract][Full Text] [Related]
47. Design and construction of a synthetic Bacillus thuringiensis Cry4Aa gene: hyperexpression in Escherichia coli. Hayakawa T; Howlader MT; Yamagiwa M; Sakai H Appl Microbiol Biotechnol; 2008 Oct; 80(6):1033-7. PubMed ID: 18751699 [TBL] [Abstract][Full Text] [Related]
48. The insecticidal crystal protein Cry2Ab10 from Bacillus thuringiensis: cloning, expression, and structure simulation. Lin Y; Fang G; Cai F Biotechnol Lett; 2008 Mar; 30(3):513-9. PubMed ID: 17973088 [TBL] [Abstract][Full Text] [Related]
49. Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. Raddadi N; Belaouis A; Tamagnini I; Hansen BM; Hendriksen NB; Boudabous A; Cherif A; Daffonchio D J Basic Microbiol; 2009 Jun; 49(3):293-303. PubMed ID: 19025870 [TBL] [Abstract][Full Text] [Related]
50. Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. Armengol G; Escobar MC; Maldonado ME; Orduz S J Appl Microbiol; 2007 Jan; 102(1):77-88. PubMed ID: 17184322 [TBL] [Abstract][Full Text] [Related]
51. Molecular characterization of local Bacillus thuringiensis strains recovered from Northern Jordan. Al-Momani F; Saadoun I; Obeidat M J Basic Microbiol; 2002; 42(3):156-61. PubMed ID: 12111742 [TBL] [Abstract][Full Text] [Related]
52. Natural occurrence of Bacillus thuringiensis on cabbage foliage and in insects associated with cabbage crops. Damgaard PH; Hansen BM; Pedersen JC; Eilenberg J J Appl Microbiol; 1997 Feb; 82(2):253-8. PubMed ID: 12452602 [TBL] [Abstract][Full Text] [Related]
53. Transcriptional response of Choristoneura fumiferana to sublethal exposure of Cry1Ab protoxin from Bacillus thuringiensis. Meunier L; Préfontaine G; Van Munster M; Brousseau R; Masson L Insect Mol Biol; 2006 Aug; 15(4):475-83. PubMed ID: 16907834 [TBL] [Abstract][Full Text] [Related]
54. A preliminary study of the bioactivity of vegetative proteins extracted from Malaysian Bacillus thuringiensis isolates. Ramasamy B; Nadarajah VD; Soong ZK; Lee HL; Mohammad SM Trop Biomed; 2008 Apr; 25(1):64-74. PubMed ID: 18600206 [TBL] [Abstract][Full Text] [Related]
55. Identification of vip3A-type genes from Bacillus thuringiensis strains and characterization of a novel vip3A-type gene. Liu J; Song F; Zhang J; Liu R; He K; Tan J; Huang D Lett Appl Microbiol; 2007 Oct; 45(4):432-8. PubMed ID: 17868317 [TBL] [Abstract][Full Text] [Related]
56. Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Ruiz de Escudero I; Estela A; Escriche B; Caballero P Appl Environ Microbiol; 2007 Jan; 73(1):337-40. PubMed ID: 17085712 [TBL] [Abstract][Full Text] [Related]
57. Spore stage expression of a vegetative insecticidal gene increase toxicity of Bacillus thuringiensis subsp. aizawai SP41 against Spodoptera exigua. Thamthiankul Chankhamhaengdecha S; Tantichodok A; Panbangred W J Biotechnol; 2008 Sep; 136(3-4):122-8. PubMed ID: 18602953 [TBL] [Abstract][Full Text] [Related]
58. Effect of Bt cotton expressing Cry1Ac and Cry2Ab, non-Bt cotton and starvation on survival and development of Trichoplusia ni (Lepidoptera: Noctuidae). Li YX; Greenberg SM; Liu TX Pest Manag Sci; 2007 May; 63(5):476-82. PubMed ID: 17421053 [TBL] [Abstract][Full Text] [Related]
59. Distribution and characterization of Bacillus thuringiensis on the phylloplane of species of piper (Piperaceae) in three altitudinal levels. Maduell P; Callejas R; Cabrera KR; Armengol G; Orduz S Microb Ecol; 2002 Aug; 44(2):144-53. PubMed ID: 12087427 [TBL] [Abstract][Full Text] [Related]
60. Mathematical relationships between spore concentrations, delta-endotoxin levels, and entomotoxicity of Bacillus thuringiensis preparations produced in different fermentation media. Vu KD; Tyagi RD; Surampalli RY; Valéro JR Bioresour Technol; 2012 Nov; 123():303-11. PubMed ID: 22940334 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]