BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 17005403)

  • 1. Premature proliferative arrest of cricopharyngeal myoblasts in oculo-pharyngeal muscular dystrophy: Therapeutic perspectives of autologous myoblast transplantation.
    Périé S; Mamchaoui K; Mouly V; Blot S; Bouazza B; Thornell LE; St Guily JL; Butler-Browne G
    Neuromuscul Disord; 2006 Nov; 16(11):770-81. PubMed ID: 17005403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PABPN1 loss-of-function causes APA-shift in oculopharyngeal muscular dystrophy.
    Shademan M; Mei H; van Engelen B; Ariyurek Y; Kloet S; Raz V
    HGG Adv; 2024 Apr; 5(2):100269. PubMed ID: 38213032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myoblasts from affected and non-affected FSHD muscles exhibit morphological differentiation defects.
    Barro M; Carnac G; Flavier S; Mercier J; Vassetzky Y; Laoudj-Chenivesse D
    J Cell Mol Med; 2010 Jan; 14(1-2):275-89. PubMed ID: 18505476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oculopharyngeal muscular dystrophy mutations link the RNA-binding protein HNRNPQ to autophagosome biogenesis.
    Ishtayeh H; Galves M; Barnatan TT; Berdichevsky Y; Amer-Sarsour F; Pasmanik-Chor M; Braverman I; Blumen SC; Ashkenazi A
    Aging Cell; 2023 Oct; 22(10):e13949. PubMed ID: 37559347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LMNA-related muscular dystrophy involving myoblast proliferation and apoptosis through the FOXO1/GADD45A pathway.
    Wu Y; Zhu X; Jiang W; Li J; Li H; Zhang K; Yang Y; Qu S; Guan X; Bai Y; Guo H; Dai L
    Biochim Biophys Acta Mol Basis Dis; 2024 Feb; 1870(2):166943. PubMed ID: 37951507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Our journey with François Gros.
    Butler-Browne G; Mouly V
    C R Biol; 2024 Mar; 346(S2):59-63. PubMed ID: 38113101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene transfer into canine myoblasts.
    Braun S; Thioudellet C; Perraud F; Escriou C; Claudepierre MC; Homann H; Lusky M; Mehtali M; Bischoff R; Pavirani A
    Cytotechnology; 1999 Jul; 30(1-3):181-9. PubMed ID: 19003368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A decline in PABPN1 induces progressive muscle weakness in oculopharyngeal muscle dystrophy and in muscle aging.
    Anvar SY; Raz Y; Verway N; van der Sluijs B; Venema A; Goeman JJ; Vissing J; van der Maarel SM; 't Hoen PA; van Engelen BG; Raz V
    Aging (Albany NY); 2013 Jun; 5(6):412-26. PubMed ID: 23793615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites.
    Jenal M; Elkon R; Loayza-Puch F; van Haaften G; Kühn U; Menzies FM; Oude Vrielink JA; Bos AJ; Drost J; Rooijers K; Rubinsztein DC; Agami R
    Cell; 2012 Apr; 149(3):538-53. PubMed ID: 22502866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of Duchenne muscular dystrophy cellular model using CRISPR-Cas9 exon deletion strategy.
    Alizadeh F; Abraghan YJ; Farrokhi S; Yousefi Y; Mirahmadi Y; Eslahi A; Mojarrad M
    Mol Cell Biochem; 2024 May; 479(5):1027-1040. PubMed ID: 37289342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharyngeal pathology in a mouse model of oculopharyngeal muscular dystrophy is associated with impaired basal autophagy in myoblasts.
    Zhang Y; Zeuthen C; Zhu C; Wu F; Mezzell AT; Whitlow TJ; Choo HJ; Vest KE
    Front Cell Dev Biol; 2022; 10():986930. PubMed ID: 36313551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies.
    Ganassi M; Muntoni F; Zammit PS
    Exp Cell Res; 2022 Feb; 411(1):112906. PubMed ID: 34740639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle.
    Boyer O; Butler-Browne G; Chinoy H; Cossu G; Galli F; Lilleker JB; Magli A; Mouly V; Perlingeiro RCR; Previtali SC; Sampaolesi M; Smeets H; Schoewel-Wolf V; Spuler S; Torrente Y; Van Tienen F;
    Front Genet; 2021; 12():702547. PubMed ID: 34408774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress in Oculopharyngeal Muscular Dystrophy.
    Yamashita S
    J Clin Med; 2021 Mar; 10(7):. PubMed ID: 33805441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systemic cell therapy for muscular dystrophies : The ultimate transplantable muscle progenitor cell and current challenges for clinical efficacy.
    Ausems CRM; van Engelen BGM; van Bokhoven H; Wansink DG
    Stem Cell Rev Rep; 2021 Jun; 17(3):878-899. PubMed ID: 33349909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular Specializations of the Human Hypopharyngeal Muscles.
    Mohammed MEA; Mu L; Abdelfattah HM
    Dysphagia; 2021 Oct; 36(5):769-785. PubMed ID: 33159539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional skeletal muscle model derived from SOD1-mutant ALS patient iPSCs recapitulates hallmarks of disease progression.
    Badu-Mensah A; Guo X; McAleer CW; Rumsey JW; Hickman JJ
    Sci Rep; 2020 Aug; 10(1):14302. PubMed ID: 32868812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired Regeneration in Dystrophic Muscle-New Target for Therapy.
    Yanay N; Rabie M; Nevo Y
    Front Mol Neurosci; 2020; 13():69. PubMed ID: 32523512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immortalized Muscle Cell Model to Test the Exon Skipping Efficacy for Duchenne Muscular Dystrophy.
    Nguyen Q; Yokota T
    J Pers Med; 2017 Oct; 7(4):. PubMed ID: 29035327
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.