BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17005601)

  • 1. Computational model of vectorial potassium transport by cochlear marginal cells and vestibular dark cells.
    Quraishi IH; Raphael RM
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C591-602. PubMed ID: 17005601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells.
    Wangemann P
    Hear Res; 1995 Oct; 90(1-2):149-57. PubMed ID: 8974992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro.
    Wangemann P; Liu J; Marcus DC
    Hear Res; 1995 Apr; 84(1-2):19-29. PubMed ID: 7642451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect of erythromycin on ion transport by stria vascularis and vestibular dark cells.
    Liu J; Marcus DC; Kobayashi T
    Acta Otolaryngol; 1996 Jul; 116(4):572-5. PubMed ID: 8831844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K(+)-induced stimulation of K+ secretion involves activation of the IsK channel in vestibular dark cells.
    Wangemann P; Shen Z; Liu J
    Hear Res; 1996 Oct; 100(1-2):201-10. PubMed ID: 8922995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the endolymphatic potential.
    Patuzzi R
    Hear Res; 2011 Jul; 277(1-2):4-19. PubMed ID: 21329750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endocochlear potential depends on Cl- channels: mechanism underlying deafness in Bartter syndrome IV.
    Rickheit G; Maier H; Strenzke N; Andreescu CE; De Zeeuw CI; Muenscher A; Zdebik AA; Jentsch TJ
    EMBO J; 2008 Nov; 27(21):2907-17. PubMed ID: 18833191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunolocalization of ClC-K chloride channel in strial marginal cells and vestibular dark cells.
    Sage CL; Marcus DC
    Hear Res; 2001 Oct; 160(1-2):1-9. PubMed ID: 11591484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stria vascularis and vestibular dark cells: characterisation of main structures responsible for inner-ear homeostasis, and their pathophysiological relations.
    Ciuman RR
    J Laryngol Otol; 2009 Feb; 123(2):151-62. PubMed ID: 18570690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization and functional studies of pendrin in the mouse inner ear provide insight about the etiology of deafness in pendred syndrome.
    Royaux IE; Belyantseva IA; Wu T; Kachar B; Everett LA; Marcus DC; Green ED
    J Assoc Res Otolaryngol; 2003 Sep; 4(3):394-404. PubMed ID: 14690057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus.
    Hibino H; Nin F; Tsuzuki C; Kurachi Y
    Pflugers Arch; 2010 Mar; 459(4):521-33. PubMed ID: 20012478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The gastric H,K-ATPase in stria vascularis contributes to pH regulation of cochlear endolymph but not to K secretion.
    Miyazaki H; Wangemann P; Marcus DC
    BMC Physiol; 2016 Aug; 17(1):1. PubMed ID: 27515813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute blockade of inner ear marginal and dark cell K
    Lee C; Jones TA
    Hear Res; 2018 Apr; 361():152-156. PubMed ID: 29459166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement of monovalent ions across the membranes of marginal cells of the stria vascularis in the guinea pig cochlea.
    Komune S; Nakagawa T; Hisashi K; Kimituki T; Uemura T
    ORL J Otorhinolaryngol Relat Spec; 1993; 55(2):61-7. PubMed ID: 8383309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential.
    Marcus DC; Wu T; Wangemann P; Kofuji P
    Am J Physiol Cell Physiol; 2002 Feb; 282(2):C403-7. PubMed ID: 11788352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embryogenesis of the inner ear. IV. Post-natal maturation of the secretory epithelia of the inner ear in correlation with the elemental composition in the endolymphatic space.
    Anniko M; Nordemar H
    Arch Otorhinolaryngol; 1980; 229(3-4):281-8. PubMed ID: 6970572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrating probes: new technology for investigation of endolymph homeostasis.
    Marcus DC
    Keio J Med; 1996 Dec; 45(4):301-5. PubMed ID: 9023447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endolymphatic Na⁺ and K⁺ concentrations during cochlear growth and enlargement in mice lacking Slc26a4/pendrin.
    Li X; Zhou F; Marcus DC; Wangemann P
    PLoS One; 2013; 8(5):e65977. PubMed ID: 23741519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of vestibular labyrinth destruction on endocochlear potential and potassium concentration of the cochlea.
    Ikeda R; Nakaya K; Yamazaki M; Oshima T; Kawase T; Kobayashi T
    Hear Res; 2010 Jun; 265(1-2):90-5. PubMed ID: 20045046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inner ear abnormalities in a Kcnq1 (Kvlqt1) knockout mouse: a model of Jervell and Lange-Nielsen syndrome.
    Rivas A; Francis HW
    Otol Neurotol; 2005 May; 26(3):415-24. PubMed ID: 15891643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.