These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 17005721)

  • 1. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells.
    Wu SC; Meir YJ; Coates CJ; Handler AM; Pelczar P; Moisyadi S; Kaminski JM
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15008-13. PubMed ID: 17005721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chimeric Mos1 and piggyBac transposases result in site-directed integration.
    Maragathavally KJ; Kaminski JM; Coates CJ
    FASEB J; 2006 Sep; 20(11):1880-2. PubMed ID: 16877528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy.
    Meir YJ; Weirauch MT; Yang HS; Chung PC; Yu RK; Wu SC
    BMC Biotechnol; 2011 Mar; 11():28. PubMed ID: 21447194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hyperactive piggyBac transposase for mammalian applications.
    Yusa K; Zhou L; Li MA; Bradley A; Craig NL
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1531-6. PubMed ID: 21205896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells.
    Huang X; Guo H; Tammana S; Jung YC; Mellgren E; Bassi P; Cao Q; Tu ZJ; Kim YC; Ekker SC; Wu X; Wang SM; Zhou X
    Mol Ther; 2010 Oct; 18(10):1803-13. PubMed ID: 20606646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimerization through the RING-Finger Domain Attenuates Excision Activity of the piggyBac Transposase.
    Sharma R; Nirwal S; Narayanan N; Nair DT
    Biochemistry; 2018 May; 57(20):2913-2922. PubMed ID: 29750515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transposase-transposase interactions in MOS1 complexes: a biochemical approach.
    Carpentier G; Jaillet J; Pflieger A; Adet J; Renault S; Augé-Gouillou C
    J Mol Biol; 2011 Jan; 405(4):892-908. PubMed ID: 21110982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size matters: versatile use of PiggyBac transposons as a genetic manipulation tool.
    Kim A; Pyykko I
    Mol Cell Biochem; 2011 Aug; 354(1-2):301-9. PubMed ID: 21516337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using chimeric piggyBac transposase to achieve directed interplasmid transposition in silkworm Bombyx mori and fruit fly Drosophila cells.
    Wang N; Jiang CY; Jiang MX; Zhang CX; Cheng JA
    J Zhejiang Univ Sci B; 2010 Sep; 11(9):728-34. PubMed ID: 20803777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A versatile, highly efficient, and potentially safer piggyBac transposon system for mammalian genome manipulations.
    Meir YJ; Lin A; Huang MF; Lin JR; Weirauch MT; Chou HC; Lin SJ; Wu SC
    FASEB J; 2013 Nov; 27(11):4429-43. PubMed ID: 23896728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgenesis in Xenopus using the Sleeping Beauty transposon system.
    Yergeau DA; Johnson Hamlet MR; Kuliyev E; Zhu H; Doherty JR; Archer TD; Subhawong AP; Valentine MB; Kelley CM; Mead PE
    Dev Dyn; 2009 Jul; 238(7):1727-43. PubMed ID: 19517568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of
    Sandoval-Villegas N; Nurieva W; Amberger M; Ivics Z
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of an inducible and optimized piggyBac transposon system.
    Cadiñanos J; Bradley A
    Nucleic Acids Res; 2007; 35(12):e87. PubMed ID: 17576687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleeping beauty transposition: biology and applications for molecular therapy.
    Izsvák Z; Ivics Z
    Mol Ther; 2004 Feb; 9(2):147-56. PubMed ID: 14759798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics.
    Tosi LR; Beverley SM
    Nucleic Acids Res; 2000 Feb; 28(3):784-90. PubMed ID: 10637331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat.
    Furushima K; Jang CW; Chen DW; Xiao N; Overbeek PA; Behringer RR
    Genetics; 2012 Dec; 192(4):1235-48. PubMed ID: 23023007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mariner Mos1 transposase optimization by rational mutagenesis.
    Germon S; Bouchet N; Casteret S; Carpentier G; Adet J; Bigot Y; Augé-Gouillou C
    Genetica; 2009 Dec; 137(3):265-76. PubMed ID: 19533383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant Mos1 mariner transposons are hyperactive in Aedes aegypti.
    Pledger DW; Coates CJ
    Insect Biochem Mol Biol; 2005 Oct; 35(10):1199-207. PubMed ID: 16102425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed transposon integration in human cells.
    Yant SR; Huang Y; Akache B; Kay MA
    Nucleic Acids Res; 2007; 35(7):e50. PubMed ID: 17344320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLE-wu, a new member of piggyBac transposon family from insect, is active in mammalian cells.
    Wu C; Wang S
    J Biosci Bioeng; 2014 Oct; 118(4):359-66. PubMed ID: 24751435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.