These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 17007137)
1. Comparison of ultraviolet absorbance, chemiluminescence, and DOAS instruments for ambient ozone monitoring. Williams EJ; Fehsenfeld FC; Jobson BT; Kuster WC; Goldan PD; Stutz J; McClenny WA Environ Sci Technol; 2006 Sep; 40(18):5755-62. PubMed ID: 17007137 [TBL] [Abstract][Full Text] [Related]
2. Field testing of new-technology ambient air ozone monitors. Ollison WM; Crow W; Spicer CW J Air Waste Manag Assoc; 2013 Jul; 63(7):855-63. PubMed ID: 23926854 [TBL] [Abstract][Full Text] [Related]
3. A re-examination of ambient air ozone monitor interferences. Spicer CW; Joseph DW; Ollison WM J Air Waste Manag Assoc; 2010 Nov; 60(11):1353-64. PubMed ID: 21141429 [TBL] [Abstract][Full Text] [Related]
4. Ozone monitoring using differential optical absorption spectroscopy (DOAS) and UV photometry instruments in Sohar, Oman. Nawahda A Environ Monit Assess; 2015 Aug; 187(8):485. PubMed ID: 26138853 [TBL] [Abstract][Full Text] [Related]
5. Field evaluations of newly available "interference-free" monitors for nitrogen dioxide and ozone at near-road and conventional National Ambient Air Quality Standards compliance sites. Leston AR; Ollison WM J Air Waste Manag Assoc; 2017 Nov; 67(11):1240-1248. PubMed ID: 28633004 [TBL] [Abstract][Full Text] [Related]
6. Mechanism and elimination of a water vapor interference in the measurement of ozone by UV absorbance. Wilson KL; Birks JW Environ Sci Technol; 2006 Oct; 40(20):6361-7. PubMed ID: 17120566 [TBL] [Abstract][Full Text] [Related]
7. Detection of Ozone and Nitric Oxide in Decomposition Products of Air-Insulated Switchgear Using Ultraviolet Differential Optical Absorption Spectroscopy (UV-DOAS). Li Y; Zhang X; Li X; Cui Z; Xiao H Appl Spectrosc; 2018 Aug; 72(8):1244-1251. PubMed ID: 29726705 [TBL] [Abstract][Full Text] [Related]
8. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9-12, 2015. Dreessen J; Sullivan J; Delgado R J Air Waste Manag Assoc; 2016 Sep; 66(9):842-62. PubMed ID: 26963934 [TBL] [Abstract][Full Text] [Related]
9. Mapping tropospheric ozone profiles from an airborne ultraviolet-visible spectrometer. Liu X; Sioris CE; Chance K; Kurosu TP; Newchurch MJ; Martin RV; Palmer PI Appl Opt; 2005 Jun; 44(16):3312-9. PubMed ID: 15943268 [TBL] [Abstract][Full Text] [Related]
10. Measurement of atmospheric ozone by cavity ring-down spectroscopy. Washenfelder RA; Wagner NL; Dube WP; Brown SS Environ Sci Technol; 2011 Apr; 45(7):2938-44. PubMed ID: 21366216 [TBL] [Abstract][Full Text] [Related]
11. Study of the uncertainty in NO2 chemiluminescence measurements due to the NO-O3 reaction in sampling lines. Miñarro MD; Ferradás EG; Rico JB; Alonso FD; Martínez FJ; Trigueros CR Environ Sci Pollut Res Int; 2011 Mar; 18(3):436-45. PubMed ID: 20814830 [TBL] [Abstract][Full Text] [Related]
12. Ground-based zenith sky abundances and in situ gas cross sections for ozone and nitrogen dioxide with the Earth Observing System Aura Ozone Monitoring Instrument. Dobber M; Dirksen R; Voors R; Mount GH; Levelt P Appl Opt; 2005 May; 44(14):2846-56. PubMed ID: 15943338 [TBL] [Abstract][Full Text] [Related]
13. Comparison of spatiotemporal prediction models of daily exposure of individuals to ambient nitrogen dioxide and ozone in Montreal, Canada. Buteau S; Hatzopoulou M; Crouse DL; Smargiassi A; Burnett RT; Logan T; Cavellin LD; Goldberg MS Environ Res; 2017 Jul; 156():201-230. PubMed ID: 28359040 [TBL] [Abstract][Full Text] [Related]
14. Comparison of ozone measurement methods in biomass burning smoke: an evaluation under field and laboratory conditions. Long RW; Whitehill A; Habel A; Urbanski S; Halliday H; Colón M; Kaushik S; Landis MS Atmos Meas Tech; 2021 Mar; 14(3):1783-1800. PubMed ID: 34017362 [TBL] [Abstract][Full Text] [Related]
15. Assessment of a regulatory model's performance relative to large spatial heterogeneity in observed ozone in Houston, Texas. Couzo E; Olatosi A; Jeffries HE; Vizuete W J Air Waste Manag Assoc; 2012 Jun; 62(6):696-706. PubMed ID: 22788108 [TBL] [Abstract][Full Text] [Related]
16. Investigation of Ground-Level Ozone and High-Pollution Episodes in a Megacity of Eastern China. Zhao H; Wang S; Wang W; Liu R; Zhou B PLoS One; 2015; 10(6):e0131878. PubMed ID: 26121146 [TBL] [Abstract][Full Text] [Related]
17. Passive ozone network of Dallas: a modeling opportunity with community involvement. 1. Varns JL; Mulik JD; Sather ME; Glen G; Smith L; Stallings C Environ Sci Technol; 2001 Mar; 35(5):845-55. PubMed ID: 11351526 [TBL] [Abstract][Full Text] [Related]
18. Monitoring of atmospheric ozone and nitrogen dioxide over the south of Portugal by ground-based and satellite observations. Bortoli D; Silva AM; Costa MJ; Domingues AF; Giovanelli G Opt Express; 2009 Jul; 17(15):12944-59. PubMed ID: 19654699 [TBL] [Abstract][Full Text] [Related]
19. A study on the atmospheric concentrations of primary and secondary air pollutants in the Athens basin performed by DOAS and DIAL measuring techniques. Kalabokas PD; Papayannis AD; Tsaknakis G; Ziomas I Sci Total Environ; 2012 Jan; 414():556-63. PubMed ID: 22153607 [TBL] [Abstract][Full Text] [Related]