These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 17007137)
41. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China. Liu B; Liang D; Yang J; Dai Q; Bi X; Feng Y; Yuan J; Xiao Z; Zhang Y; Xu H Environ Pollut; 2016 Nov; 218():757-769. PubMed ID: 27567166 [TBL] [Abstract][Full Text] [Related]
42. Assessment of ambient air quality in Eskişehir, Turkey. Ozden O; Döğeroğlu T; Kara S Environ Int; 2008 Jul; 34(5):678-87. PubMed ID: 18291527 [TBL] [Abstract][Full Text] [Related]
43. Removing volatile organic compounds in cooking fume by nano-sized TiO Li YH; Cheng SW; Yuan CS; Lai TF; Hung CH Chemosphere; 2018 Oct; 208():808-817. PubMed ID: 29906755 [TBL] [Abstract][Full Text] [Related]
44. Emissions and ambient air monitoring trends of lower olefins across Texas from 2002 to 2012. Myers JL; Phillips T; Grant RL Chem Biol Interact; 2015 Nov; 241():2-9. PubMed ID: 25727265 [TBL] [Abstract][Full Text] [Related]
45. A direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard. Simon H; Baker KR; Akhtar F; Napelenok SL; Possiel N; Wells B; Timin B Environ Sci Technol; 2013 Mar; 47(5):2304-13. PubMed ID: 23256562 [TBL] [Abstract][Full Text] [Related]
46. Variability and sources of surface ozone at rural sites in Nevada, USA: Results from two years of the Nevada Rural Ozone Initiative. Fine R; Miller MB; Burley J; Jaffe DA; Pierce RB; Lin M; Gustin MS Sci Total Environ; 2015 Oct; 530-531():471-482. PubMed ID: 25548133 [TBL] [Abstract][Full Text] [Related]
47. Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul. Song SK; Shon ZH; Kang YH; Kim KH; Han SB; Kang M; Bang JH; Oh I Environ Pollut; 2019 Apr; 247():763-774. PubMed ID: 30721867 [TBL] [Abstract][Full Text] [Related]
48. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Ou J; Zheng J; Li R; Huang X; Zhong Z; Zhong L; Lin H Sci Total Environ; 2015 Oct; 530-531():393-402. PubMed ID: 26057544 [TBL] [Abstract][Full Text] [Related]
49. Spatial distribution of ground-level urban background O3 concentrations in the Metropolitan Area of Buenos Aires, Argentina. Pineda Rojas AL; Venegas LE Environ Pollut; 2013 Dec; 183():159-65. PubMed ID: 23246369 [TBL] [Abstract][Full Text] [Related]
50. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions. Fujita EM; Campbell DE; Stockwell WR; Saunders E; Fitzgerald R; Perea R J Air Waste Manag Assoc; 2016 Feb; 66(2):201-14. PubMed ID: 26514212 [TBL] [Abstract][Full Text] [Related]
51. Identifying sources of ozone to three rural locations in Nevada, USA, using ancillary gas pollutants, aerosol chemistry, and mercury. Miller MB; Fine R; Pierce AM; Gustin MS Sci Total Environ; 2015 Oct; 530-531():483-492. PubMed ID: 25957787 [TBL] [Abstract][Full Text] [Related]
52. Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 1. Reactivity based trading and potential for ozone hot spot formation. Wang L; Thompson T; McDonald-Buller EC; Webb A; Allen DT Environ Sci Technol; 2007 Apr; 41(7):2095-102. PubMed ID: 17438748 [TBL] [Abstract][Full Text] [Related]
53. Assessing Temporal and Spatial Patterns of Observed and Predicted Ozone in Multiple Urban Areas. Simon H; Wells B; Baker KR; Hubbell B Environ Health Perspect; 2016 Sep; 124(9):1443-52. PubMed ID: 27153213 [TBL] [Abstract][Full Text] [Related]
54. Multi-year evaluation of ambient volatile organic compounds: temporal variation, ozone formation, meteorological parameters, and sources. Kim KH; Chun HH; Jo WK Environ Monit Assess; 2015 Feb; 187(2):27. PubMed ID: 25632908 [TBL] [Abstract][Full Text] [Related]
55. [Variation characteristics of surface ozone and its precursors during summertime in Nanjing northern suburb]. Shao P; An JL; Yang H; Lin X; Ji DS Huan Jing Ke Xue; 2014 Nov; 35(11):4031-43. PubMed ID: 25639074 [TBL] [Abstract][Full Text] [Related]
56. Characteristics and applications of small, portable gaseous air pollution monitors. McKercher GR; Salmond JA; Vanos JK Environ Pollut; 2017 Apr; 223():102-110. PubMed ID: 28162801 [TBL] [Abstract][Full Text] [Related]
57. The use of ambient air quality modeling to estimate individual and population exposure for human health research: a case study of ozone in the Northern Georgia Region of the United States. Bell ML Environ Int; 2006 Jul; 32(5):586-93. PubMed ID: 16516968 [TBL] [Abstract][Full Text] [Related]
58. Spatial Distribution of Ozone Formation in China Derived from Emissions of Speciated Volatile Organic Compounds. Wu R; Xie S Environ Sci Technol; 2017 Mar; 51(5):2574-2583. PubMed ID: 28145691 [TBL] [Abstract][Full Text] [Related]
59. Concentration measurements of ozone in the 1200-300ppbv range: an intercomparison between the BNM ultraviolet standard and infrared methods. Dufour G; Valentin A; Henry A; Hurtmans D; Camy-Peyret C Spectrochim Acta A Mol Biomol Spectrosc; 2004 Dec; 60(14):3345-52. PubMed ID: 15561619 [TBL] [Abstract][Full Text] [Related]
60. Analysis of short-term ozone and PM Mannshardt E; Benedict K; Jenkins S; Keating M; Mintz D; Stone S; Wayland R J Air Waste Manag Assoc; 2017 Apr; 67(4):462-474. PubMed ID: 27808658 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]