These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17007138)

  • 1. High temporal resolution oxygen imaging in bioirrigated sediments.
    Polerecky L; Volkenborn N; Stief P
    Environ Sci Technol; 2006 Sep; 40(18):5763-9. PubMed ID: 17007138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of transport processes in bioirrigated muddy sediments by [18F]fluoride PET (Positron Emission Tomography).
    Roskosch A; Lewandowski J; Bergmann R; Wilke F; Brenner W; Buchert R
    Appl Radiat Isot; 2010 Jun; 68(6):1094-7. PubMed ID: 20185319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination.
    Lagauzère S; Pischedda L; Cuny P; Gilbert F; Stora G; Bonzom JM
    Environ Pollut; 2009 Apr; 157(4):1234-42. PubMed ID: 19121883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trait-mediated indirect effects of predatory fish on microbial mineralization in aquatic sediments.
    Stief P; Hölker F
    Ecology; 2006 Dec; 87(12):3152-9. PubMed ID: 17249239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chironomid larvae enhance phosphorus burial in lake sediments: Insights from long-term and short-term experiments.
    Hupfer M; Jordan S; Herzog C; Ebeling C; Ladwig R; Rothe M; Lewandowski J
    Sci Total Environ; 2019 May; 663():254-264. PubMed ID: 30711592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seeing the unseen--bioturbation in 4D: tracing bioirrigation in marine sediment using positron emission tomography and computed tomography.
    Delefosse M; Kristensen E; Crunelle D; Braad PE; Dam JH; Thisgaard H; Thomassen A; Høilund-Carlsen PF
    PLoS One; 2015; 10(4):e0122201. PubMed ID: 25837626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment.
    Poulsen M; Kofoed MV; Larsen LH; Schramm A; Stief P
    Syst Appl Microbiol; 2014 Feb; 37(1):51-9. PubMed ID: 24054696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioturbation/bioirrigation by Chironomus plumosus as main factor controlling elemental remobilization from aquatic sediments?
    Schaller J
    Chemosphere; 2014 Jul; 107():336-343. PubMed ID: 24457053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrification in freshwater sediments as influenced by insect larvae: quantification by microsensors and fluorescence in situ hybridization.
    Altmann D; Stief P; Amann R; de Beer D
    Microb Ecol; 2004 Aug; 48(2):145-53. PubMed ID: 15107956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration.
    Baranov V; Lewandowski J; Romeijn P; Singer G; Krause S
    Sci Rep; 2016 Jun; 6():27329. PubMed ID: 27256514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Community bioirrigation potential (BIP
    Renz JR; Powilleit M; Gogina M; Zettler ML; Morys C; Forster S
    Mar Environ Res; 2018 Oct; 141():214-224. PubMed ID: 30224085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Development of Sediment Micro-Interface Under Physical and Chironomus plumosus Combination Disturbance].
    Wang R; Li DP; Huang Y; Liu YJ; Chen J
    Huan Jing Ke Xue; 2015 Nov; 36(11):4112-20. PubMed ID: 26910997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging oxygen distribution in marine sediments. The importance of bioturbation and sediment heterogeneity.
    Pischedda L; Poggiale JC; Cuny P; Gilbert F
    Acta Biotheor; 2008 Jun; 56(1-2):123-35. PubMed ID: 18247133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure and effects of sediment-spiked fludioxonil on macroinvertebrates and zooplankton in outdoor aquatic microcosms.
    Yin XH; Brock TCM; Barone LE; Belgers JDM; Boerwinkel MC; Buijse L; van Wijngaarden RPA; Hamer M; Roessink I
    Sci Total Environ; 2018 Jan; 610-611():1222-1238. PubMed ID: 28851143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of chironomid larvae and Limnodrilus hoffmeisteri bioturbation on the distribution and flux of chromium at the sediment-water interface.
    Cheng D; Song J; Zhao X; Wang S; Lin Q; Peng J; Su P; Deng W
    J Environ Manage; 2019 Sep; 245():151-159. PubMed ID: 31150906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium accumulation by invertebrates living at the sediment-water interface.
    Hare L; Tessier A; Warren L
    Environ Toxicol Chem; 2001 Apr; 20(4):880-9. PubMed ID: 11345465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of uranium-contaminated sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and Tubifex tubifex worms (Annelida, Tubificidae).
    Lagauzère S; Boyer P; Stora G; Bonzom JM
    Chemosphere; 2009 Jul; 76(3):324-34. PubMed ID: 19403158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sediment properties influencing the bioavailability of uranium to Chironomus dilutus larvae in spiked field sediments.
    Crawford SE; Liber K
    Chemosphere; 2016 Apr; 148():77-85. PubMed ID: 26802266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin of speciation: trace metal kinetics over natural water/sediment interfaces and the consequences for bioaccumulation.
    Vink JP
    Environ Pollut; 2009 Feb; 157(2):519-27. PubMed ID: 18995939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sedimentary microbial oxygen demand for laminar flow over a sediment bed of finite length.
    Higashino M; Stefan HG
    Water Res; 2005 Sep; 39(14):3153-66. PubMed ID: 16054191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.