BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17007142)

  • 1. Soil fungi reduce the iron content and the DNA damaging effects of asbestos fibers.
    Daghino S; Turci F; Tomatis M; Favier A; Perotto S; Douki T; Fubini B
    Environ Sci Technol; 2006 Sep; 40(18):5793-8. PubMed ID: 17007142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioweathering of chrysotile by fungi isolated in ophiolitic sites.
    Daghino S; Martino E; Vurro E; Tomatis M; Girlanda M; Fubini B; Perotto S
    FEMS Microbiol Lett; 2008 Aug; 285(2):242-9. PubMed ID: 18616596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weathering of chrysotile asbestos by the serpentine rock-inhabiting fungus Verticillium leptobactrum.
    Daghino S; Turci F; Tomatis M; Girlanda M; Fubini B; Perotto S
    FEMS Microbiol Ecol; 2009 Jul; 69(1):132-41. PubMed ID: 19453742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic materials and living organisms: surface modifications and fungal responses to various asbestos forms.
    Daghino S; Martino E; Fenoglio I; Tomatis M; Perotto S; Fubini B
    Chemistry; 2005 Sep; 11(19):5611-8. PubMed ID: 16021644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of genotoxic effects in asbestos-exposed primary human mesothelial cells by radical scavengers, metal chelators and a glutathione precursor.
    Poser I; Rahman Q; Lohani M; Yadav S; Becker HH; Weiss DG; Schiffmann D; Dopp E
    Mutat Res; 2004 Apr; 559(1-2):19-27. PubMed ID: 15066570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and biochemical interactions of soil fungi with asbestos fibers.
    Martino E; Cerminara S; Prandi L; Fubini B; Perotto S
    Environ Toxicol Chem; 2004 Apr; 23(4):938-44. PubMed ID: 15095889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A study of DNA damage induced by asbestos fibers in vitro].
    Zhang J; Sun C; Yao Q; Lian X; Ke F
    Hua Xi Yi Ke Da Xue Xue Bao; 1994 Sep; 25(3):333-6. PubMed ID: 7896256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asbestos surface provides a niche for oxidative modification.
    Nagai H; Ishihara T; Lee WH; Ohara H; Okazaki Y; Okawa K; Toyokuni S
    Cancer Sci; 2011 Dec; 102(12):2118-25. PubMed ID: 21895868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the western Alps. Part 2: Oxidant activity of the fibers.
    Turci F; Tomatis M; Gazzano E; Riganti C; Martra G; Bosia A; Ghigo D; Fubini B
    J Toxicol Environ Health A; 2005 Jan; 68(1):21-39. PubMed ID: 15739802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron-loaded synthetic chrysotile: a new model solid for studying the role of iron in asbestos toxicity.
    Gazzano E; Turci F; Foresti E; Putzu MG; Aldieri E; Silvagno F; Lesci IG; Tomatis M; Riganti C; Romano C; Fubini B; Roveri N; Ghigo D
    Chem Res Toxicol; 2007 Mar; 20(3):380-7. PubMed ID: 17315889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of the synergistic interaction of asbestos fibers with cigarette tar extracts for the generation of hydroxyl radicals in aqueous buffer solution.
    Valavanidis A; Balomenou H; Macropoulou I; Zarodimos I
    Free Radic Biol Med; 1996; 20(6):853-8. PubMed ID: 8728034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron removal from raw asbestos by siderophores-producing Pseudomonas.
    David SR; Ihiawakrim D; Regis R; Geoffroy VA
    J Hazard Mater; 2020 Mar; 385():121563. PubMed ID: 31776083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular response of Fusarium oxysporum to crocidolite asbestos as revealed by a combined proteomic approach.
    Chiapello M; Daghino S; Martino E; Perotto S
    J Proteome Res; 2010 Aug; 9(8):3923-31. PubMed ID: 20578744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Siderophore-mediated iron removal from chrysotile: Implications for asbestos toxicity reduction and bioremediation.
    Mohanty SK; Gonneau C; Salamatipour A; Pietrofesa RA; Casper B; Christofidou-Solomidou M; Willenbring JK
    J Hazard Mater; 2018 Jan; 341():290-296. PubMed ID: 28797944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro cleavage by asbestos fibers of the fifth component of human complement through free-radical generation and kallikrein activation.
    Governa M; Amati M; Valentino M; Visonà I; Fubini B; Botta GC; Volpe AR; Carmignani M
    J Toxicol Environ Health A; 2000 Apr; 59(7):539-52. PubMed ID: 10777245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics and modifying factors of asbestos-induced oxidative DNA damage.
    Jiang L; Nagai H; Ohara H; Hara S; Tachibana M; Hirano S; Shinohara Y; Kohyama N; Akatsuka S; Toyokuni S
    Cancer Sci; 2008 Nov; 99(11):2142-51. PubMed ID: 18775024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbe-Mineral Interactions between Asbestos and Thermophilic Chemolithoautotrophic Anaerobes.
    Choi JK; Vigliaturo R; Gieré R; Pérez-Rodríguez I
    Appl Environ Microbiol; 2023 Jun; 89(6):e0204822. PubMed ID: 37184266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in phi X174 RFI DNA.
    Lund LG; Aust AE
    Carcinogenesis; 1992 Apr; 13(4):637-42. PubMed ID: 1315628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of mineral fibres in contact with human cell cultures. An in situ μXANES, μXRD and XRF iron mapping study.
    Pollastri S; Gualtieri AF; Vigliaturo R; Ignatyev K; Strafella E; Pugnaloni A; Croce A
    Chemosphere; 2016 Dec; 164():547-557. PubMed ID: 27619065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA strand breaks following in vitro exposure to asbestos increase with surface-complexed [Fe3+].
    Ghio AJ; Kennedy TP; Stonehuerner JG; Crumbliss AL; Hoidal JR
    Arch Biochem Biophys; 1994 May; 311(1):13-8. PubMed ID: 8185309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.