These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17007678)

  • 41. The molecular and cellular features of 2-cell-like cells: a reference guide.
    Genet M; Torres-Padilla ME
    Development; 2020 Aug; 147(16):. PubMed ID: 32847823
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An elaborate regulation of Mammalian target of rapamycin activity is required for somatic cell reprogramming induced by defined transcription factors.
    He J; Kang L; Wu T; Zhang J; Wang H; Gao H; Zhang Y; Huang B; Liu W; Kou Z; Zhang H; Gao S
    Stem Cells Dev; 2012 Sep; 21(14):2630-41. PubMed ID: 22471963
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pattern regulation in defect embryos of Xenopus laevis.
    Kageura H; Yamana K
    Dev Biol; 1984 Feb; 101(2):410-5. PubMed ID: 6692985
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Derivation of clinical-grade human embryonic stem cells.
    Rodríguez CI; Galán A; Valbuena D; Simón C
    Reprod Biomed Online; 2006 Jan; 12(1):112-8. PubMed ID: 16454945
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nuclear cloning, epigenetic reprogramming and cellular differentiation.
    Jaenisch R; Hochedlinger K; Eggan K
    Novartis Found Symp; 2005; 265():107-18; discussion 118-28. PubMed ID: 16050253
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Markers that define stemness in ESC are unable to identify the totipotent cells in human preimplantation embryos.
    Cauffman G; De Rycke M; Sermon K; Liebaers I; Van de Velde H
    Hum Reprod; 2009 Jan; 24(1):63-70. PubMed ID: 18824471
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Regulative Nature of Mammalian Embryos.
    Klimczewska K; Kasperczuk A; Suwińska A
    Curr Top Dev Biol; 2018; 128():105-149. PubMed ID: 29477160
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Derivation of oocytes from mouse embryonic stem cells.
    Hübner K; Fuhrmann G; Christenson LK; Kehler J; Reinbold R; De La Fuente R; Wood J; Strauss JF; Boiani M; Schöler HR
    Science; 2003 May; 300(5623):1251-6. PubMed ID: 12730498
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reprogramming somatic gene activity by fusion with pluripotent cells.
    Do JT; Han DW; Schöler HR
    Stem Cell Rev; 2006; 2(4):257-64. PubMed ID: 17848712
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lineage Segregation in the Totipotent Embryo.
    Wu G; Schöler HR
    Curr Top Dev Biol; 2016; 117():301-17. PubMed ID: 26969985
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Retrospective analysis: reproducibility of interblastomere differences of mRNA expression in 2-cell stage mouse embryos is remarkably poor due to combinatorial mechanisms of blastomere diversification.
    Casser E; Israel S; Schlatt S; Nordhoff V; Boiani M
    Mol Hum Reprod; 2018 Jul; 24(7):388-400. PubMed ID: 29746690
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deterministic nuclear reprogramming of mammalian nuclei to a totipotency-like state by Amphibian meiotic oocytes for stem cell therapy in humans.
    Wen MH; Barbosa Triana H; Butler R; Hu HW; Dai YH; Lawrence N; Hong JJ; Garrett N; Jones-Green R; Rawlins EL; Dong Z; Koziol MJ; Gurdon JB
    Biol Open; 2024 Mar; 13(3):. PubMed ID: 37982514
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment of beta-HCG, beta-LH mRNA and ploidy in individual human blastomeres.
    Hansis C; Grifo JA; Tang Y; Krey LC
    Reprod Biomed Online; 2002; 5(2):156-61. PubMed ID: 12419040
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Avian-induced pluripotent stem cells derived using human reprogramming factors.
    Lu Y; West FD; Jordan BJ; Mumaw JL; Jordan ET; Gallegos-Cardenas A; Beckstead RB; Stice SL
    Stem Cells Dev; 2012 Feb; 21(3):394-403. PubMed ID: 21970437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DOT1L inhibitor improves early development of porcine somatic cell nuclear transfer embryos.
    Tao J; Zhang Y; Zuo X; Hong R; Li H; Liu X; Huang W; Cao Z; Zhang Y
    PLoS One; 2017; 12(6):e0179436. PubMed ID: 28632762
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chromatin in early mammalian embryos: achieving the pluripotent state.
    Fulka H; St John JC; Fulka J; Hozák P
    Differentiation; 2008 Jan; 76(1):3-14. PubMed ID: 18093226
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Building up the nucleus: nuclear organization in the establishment of totipotency and pluripotency during mammalian development.
    Borsos M; Torres-Padilla ME
    Genes Dev; 2016 Mar; 30(6):611-21. PubMed ID: 26980186
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The reprogramming factor nuclear receptor subfamily 5, group A, member 2 cannot replace octamer-binding transcription factor 4 function in the self-renewal of embryonic stem cells.
    Choi KW; Oh HR; Lee J; Lim B; Han YM; Oh J; Kim J
    FEBS J; 2014 Feb; 281(4):1029-45. PubMed ID: 24341592
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potentiality of embryonic stem cells: an ethical problem even with alternative stem cell sources.
    Denker HW
    J Med Ethics; 2006 Nov; 32(11):665-71. PubMed ID: 17074826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reprogramming of somatic cells and nuclei by Xenopus oocyte and egg extracts.
    Tokmakov AA; Iwasaki T; Sato KI; Kamada S
    Int J Dev Biol; 2016; 60(7-8-9):289-296. PubMed ID: 27251073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.