These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 17007919)

  • 1. Fatigue behavior of resin composites in aqueous environments.
    Takeshige F; Kawakami Y; Hayashi M; Ebisu S
    Dent Mater; 2007 Jul; 23(7):893-9. PubMed ID: 17007919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue of tooth-colored restoratives in aqueous environment.
    Kawakami Y; Takeshige F; Hayashi M; Ebisu S
    Dent Mater J; 2007 Jan; 26(1):1-6. PubMed ID: 17410886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic aspects of fatigue crack growth behavior in resin based dental restorative composites.
    Shah MB; Ferracane JL; Kruzic JJ
    Dent Mater; 2009 Jul; 25(7):909-16. PubMed ID: 19233460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. R-curve behavior and toughening mechanisms of resin-based dental composites: effects of hydration and post-cure heat treatment.
    Shah MB; Ferracane JL; Kruzic JJ
    Dent Mater; 2009 Jun; 25(6):760-70. PubMed ID: 19187956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of filler system on the mechanical properties of light-cured composite resins. I. Effect of various types of silica fillers on the mechanical properties of the composite resins].
    Kawaguchi M; Fukushima T; Horibe T; Watanabe T
    Shika Zairyo Kikai; 1989 Mar; 8(2):174-9. PubMed ID: 2557683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of water exposure on leakage of fillers and topography of composite resin restoratives.
    el-Din IM; el-Sayed A-el-B
    Egypt Dent J; 1994 Jul; 40(3):765-74. PubMed ID: 9588155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow crack propagation in composite restorative materials.
    Montes-G GM; Draughn RA
    J Biomed Mater Res; 1987 May; 21(5):629-42. PubMed ID: 3584167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of sub-critical fatigue crack propagation in a restorative composite.
    Loughran GM; Versluis A; Douglas WH
    Dent Mater; 2005 Mar; 21(3):252-61. PubMed ID: 15705432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of contraction stresses in dental composites by analysis of crack propagation in the matrix surrounding a cavity.
    Yamamoto T; Ferracane JL; Sakaguchi RL; Swain MV
    Dent Mater; 2009 Apr; 25(4):543-50. PubMed ID: 19100613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue behaviour of dental composite materials.
    Drummond JL; Lin L; Al-Turki LA; Hurley RK
    J Dent; 2009 May; 37(5):321-30. PubMed ID: 19181429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of test protocol variables for dental implant fatigue research.
    Lee CK; Karl M; Kelly JR
    Dent Mater; 2009 Nov; 25(11):1419-25. PubMed ID: 19646746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.
    Curtis AR; Palin WM; Fleming GJ; Shortall AC; Marquis PM
    Dent Mater; 2009 Feb; 25(2):180-7. PubMed ID: 18656254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of porous glass-ceramic fillers on mechanical properties of light-cured dental resin composites.
    Liu Y; Tan Y; Lei T; Xiang Q; Han Y; Huang B
    Dent Mater; 2009 Jun; 25(6):709-15. PubMed ID: 19131096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fracture toughness comparison of six resin composites.
    Watanabe H; Khera SC; Vargas MA; Qian F
    Dent Mater; 2008 Mar; 24(3):418-25. PubMed ID: 17697707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of water aging on microtensile bond strength of dual-cured resin cements to pre-treated sintered zirconium-oxide ceramics.
    Oyagüe RC; Monticelli F; Toledano M; Osorio E; Ferrari M; Osorio R
    Dent Mater; 2009 Mar; 25(3):392-9. PubMed ID: 18952276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructural characterization and fracture behavior of a microhybrid and a nanofill composite.
    Rodrigues SA; Scherrer SS; Ferracane JL; Della Bona A
    Dent Mater; 2008 Sep; 24(9):1281-8. PubMed ID: 18374408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.
    Ritchie RO; Dauskardt RH; Yu WK; Brendzel AM
    J Biomed Mater Res; 1990 Feb; 24(2):189-206. PubMed ID: 2329114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcritical crack growth and in vitro lifetime prediction of resin composites with different filler distributions.
    Ornaghi BP; Meier MM; Rosa V; Cesar PF; Lohbauer U; Braga RR
    Dent Mater; 2012 Sep; 28(9):985-95. PubMed ID: 22633684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical properties of nanofilled resin-based composites: the impact of dry and wet cyclic pre-loading on bi-axial flexure strength.
    Curtis AR; Palin WM; Fleming GJ; Shortall AC; Marquis PM
    Dent Mater; 2009 Feb; 25(2):188-97. PubMed ID: 18656255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.