BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 17008162)

  • 1. Bran fermentation as a means to enhance technological properties and bioactivity of rye.
    Katina K; Laitila A; Juvonen R; Liukkonen KH; Kariluoto S; Piironen V; Landberg R; Aman P; Poutanen K
    Food Microbiol; 2007 Apr; 24(2):175-86. PubMed ID: 17008162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs.
    Kariluoto S; Aittamaa M; Korhola M; Salovaara H; Vahteristo L; Piironen V
    Int J Food Microbiol; 2006 Feb; 106(2):137-43. PubMed ID: 16213050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Process-induced changes on bioactive compounds in whole grain rye.
    Liukkonen KH; Katina K; Wilhelmsson A; Myllymäki O; Lampi AM; Kariluoto S; Piironen V; Heinonen SM; Nurmi T; Adlercreutz H; Peltoketo A; Pihlava JM; Hietaniemi V; Poutanen K
    Proc Nutr Soc; 2003 Feb; 62(1):117-22. PubMed ID: 12740066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of ecological factors on the stability of microbial associations in sourdough fermentation.
    Vogelmann SA; Hertel C
    Food Microbiol; 2011 May; 28(3):583-9. PubMed ID: 21356468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid sourdough fermentation: industrial application perspectives.
    Carnevali P; Ciati R; Leporati A; Paese M
    Food Microbiol; 2007 Apr; 24(2):150-4. PubMed ID: 17008158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic solubilization of arabinoxylans from native, extruded, and high-shear-treated rye bran by different endo-xylanases and other hydrolyzing enzymes.
    Figueroa-Espinoza MC; Poulsen C; Borch Søe J; Zargahi MR; Rouau X
    J Agric Food Chem; 2004 Jun; 52(13):4240-9. PubMed ID: 15212475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of homo- and heterofermentative lactic acid bacteria for implementation of fermented wheat bran in bread.
    Prückler M; Lorenz C; Endo A; Kraler M; Dürrschmid K; Hendriks K; Soares da Silva F; Auterith E; Kneifel W; Michlmayr H
    Food Microbiol; 2015 Aug; 49():211-9. PubMed ID: 25846933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defined multi-species semi-liquid ready-to-use sourdough starter.
    Gaggiano M; Di Cagno R; De Angelis M; Arnault P; Tossut P; Fox PF; Gobbetti M
    Food Microbiol; 2007 Feb; 24(1):15-24. PubMed ID: 16943090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model.
    Nordlund E; Aura AM; Mattila I; Kössö T; Rouau X; Poutanen K
    J Agric Food Chem; 2012 Aug; 60(33):8134-45. PubMed ID: 22731123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of sourdough on the texture of bread.
    Arendt EK; Ryan LA; Dal Bello F
    Food Microbiol; 2007 Apr; 24(2):165-74. PubMed ID: 17008161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiological profile of maize and rye flours, and sourdough used for the manufacture of traditional Portuguese bread.
    Rocha JM; Malcata FX
    Food Microbiol; 2012 Aug; 31(1):72-88. PubMed ID: 22475945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactic acid bacteria community dynamics and metabolite production of rye sourdough fermentations share characteristics of wheat and spelt sourdough fermentations.
    Weckx S; Van der Meulen R; Maes D; Scheirlinck I; Huys G; Vandamme P; De Vuyst L
    Food Microbiol; 2010 Dec; 27(8):1000-8. PubMed ID: 20832677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid-derived betaines dominate as urinary markers for rye bran intake in mice fed high-fat diet--A nontargeted metabolomics study.
    Pekkinen J; Rosa-Sibakov N; Micard V; Keski-Rahkonen P; Lehtonen M; Poutanen K; Mykkänen H; Hanhineva K
    Mol Nutr Food Res; 2015 Aug; 59(8):1550-62. PubMed ID: 25944556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of folate-producing bacteria from oat bran and rye flakes.
    Herranen M; Kariluoto S; Edelmann M; Piironen V; Ahvenniemi K; Iivonen V; Salovaara H; Korhola M
    Int J Food Microbiol; 2010 Sep; 142(3):277-85. PubMed ID: 20678822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria.
    Panagou EZ; Schillinger U; Franz CM; Nychas GJ
    Food Microbiol; 2008 Apr; 25(2):348-58. PubMed ID: 18206777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing acrylamide content and color in rye crisp bread.
    Mustafa A; Andersson R; Rosén J; Kamal-Eldin A; Aman P
    J Agric Food Chem; 2005 Jul; 53(15):5985-9. PubMed ID: 16028985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the fermentability of oat fractions obtained by debranning using lactic acid bacteria.
    Kedia G; Vázquez JA; Pandiella SS
    J Appl Microbiol; 2008 Oct; 105(4):1227-37. PubMed ID: 18713289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactic acid fermentation of food waste for swine feed.
    Yang SY; Ji KS; Baik YH; Kwak WS; McCaskey TA
    Bioresour Technol; 2006 Oct; 97(15):1858-64. PubMed ID: 16257200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria.
    Chun J; Kim GM; Lee KW; Choi ID; Kwon GH; Park JY; Jeong SJ; Kim JS; Kim JH
    J Food Sci; 2007 Mar; 72(2):M39-44. PubMed ID: 17995840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation.
    Van Craeyveld V; Holopainen U; Selinheimo E; Poutanen K; Delcour JA; Courtin CM
    J Agric Food Chem; 2009 Sep; 57(18):8467-73. PubMed ID: 19754173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.