BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17008452)

  • 21. Effects of peripheral and central chemoreflex activation on the isopnoeic rating of breathing in exercising humans.
    Ward SA; Whipp BJ
    J Physiol; 1989 Apr; 411():27-43. PubMed ID: 2515273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of acute and 23 days of intermittent hypoxic exposures on the exercise-induced forehead sweating response.
    Kacin A; Golja P; Eiken O; Tipton MJ; Mekjavic IB
    Eur J Appl Physiol; 2007 Mar; 99(5):557-66. PubMed ID: 17242947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic and thermodynamic responses to dehydration-induced reductions in muscle blood flow in exercising humans.
    González-Alonso J; Calbet JA; Nielsen B
    J Physiol; 1999 Oct; 520 Pt 2(Pt 2):577-89. PubMed ID: 10523424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carotid chemoreceptors have a limited role in mediating the hyperthermia-induced hyperventilation in exercising humans.
    Fujii N; Kashihara M; Kenny GP; Honda Y; Fujimoto T; Cao Y; Nishiyasu T
    J Appl Physiol (1985); 2019 Feb; 126(2):305-313. PubMed ID: 30382804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans.
    Nybo L; Nielsen B
    J Physiol; 2001 Jul; 534(Pt 1):279-86. PubMed ID: 11433008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise.
    González-Alonso J; Mora-Rodríguez R; Below PR; Coyle EF
    J Appl Physiol (1985); 1997 Apr; 82(4):1229-36. PubMed ID: 9104860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of body temperature on the development of fatigue during prolonged exercise in the heat.
    González-Alonso J; Teller C; Andersen SL; Jensen FB; Hyldig T; Nielsen B
    J Appl Physiol (1985); 1999 Mar; 86(3):1032-9. PubMed ID: 10066720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exercise can be pyrogenic in humans.
    Bradford CD; Cotter JD; Thorburn MS; Walker RJ; Gerrard DF
    Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R143-9. PubMed ID: 17197641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of inhaled nitric oxide on gas exchange during normoxic and hypoxic exercise in highly trained cyclists.
    Sheel AW; Edwards MR; Hunte GS; McKenzie DC
    J Appl Physiol (1985); 2001 Mar; 90(3):926-32. PubMed ID: 11181602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Short-latency ventilatory responses to sudden withdrawal of hypoxia at normal and raised body temperature in man.
    Jensen JI; Vejby-Christensen H; Petersen ES
    Acta Physiol Scand; 1978 Mar; 102(3):257-64. PubMed ID: 645371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A standard blood bank donation alters the thermal and cardiovascular responses during subsequent exercise.
    Mora-Rodriguez R; Aguado-Jimenez R; Del Coso J; Estevez E
    Transfusion; 2012 Nov; 52(11):2339-47. PubMed ID: 22452709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The ventilation, lactate and electromyographic thresholds during incremental exercise tests in normoxia, hypoxia and hyperoxia.
    Mateika JH; Duffin J
    Eur J Appl Physiol Occup Physiol; 1994; 69(2):110-8. PubMed ID: 7805664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of hyperthermia on ventilation and metabolism during hypoxia in conscious mice.
    Iwase M; Izumizaki M; Kanamaru M; Homma I
    Jpn J Physiol; 2004 Feb; 54(1):53-9. PubMed ID: 15040849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Respiratory alterations due to chronic long-term intermittent hypobaric hypoxia in rabbits: importance of peripheral chemoreceptors.
    Guner I; Yelmen N; Sahin G; Oruc T; Sipahi S; Yaman MO
    Arch Med Res; 2007 Oct; 38(7):739-45. PubMed ID: 17845892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ventilatory response to sustained hypoxia during exercise.
    Ward DS; Nguyen TT
    Med Sci Sports Exerc; 1991 Jun; 23(6):719-26. PubMed ID: 1886480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hypoxic potentiation of the ventilatory response to dynamic forearm exercise.
    Fregosi RF; Seals DR
    J Appl Physiol (1985); 1993 May; 74(5):2365-72. PubMed ID: 8335569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemoreflex drive and the dynamics of ventilation and gas exchange during exercise at hypoxia.
    Fukuoka Y; Endo M; Oishi Y; Ikegami H
    Am J Respir Crit Care Med; 2003 Nov; 168(9):1115-22. PubMed ID: 14581289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of respiratory muscle training on maximum aerobic power in normoxia and hypoxia.
    Esposito F; Limonta E; Alberti G; Veicsteinas A; Ferretti G
    Respir Physiol Neurobiol; 2010 Mar; 170(3):268-72. PubMed ID: 20156604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ventilatory responses of conscious dogs to isocapnic oxygen tests. a method of exploring the central component of respiratory drive and its dependence on O2 and CO2.
    Ungar A; Bouverot P
    Respir Physiol; 1980 Feb; 39(2):183-97. PubMed ID: 6769143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of low-intensity isocapnic hyperpnoea on blood lactate disappearance after exhaustive arm exercise.
    Perret C; Mueller G
    Br J Sports Med; 2007 Sep; 41(9):588-91; discussion 591. PubMed ID: 17502332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.