These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 17008527)

  • 21. Communication: Ultrafast vibrational dynamics of hydrogen bond network terminated at the air∕water interface: a two-dimensional heterodyne-detected vibrational sum frequency generation study.
    Singh PC; Nihonyanagi S; Yamaguchi S; Tahara T
    J Chem Phys; 2013 Oct; 139(16):161101. PubMed ID: 24181995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of nanoscopic water: vibrational echo and infrared pump-probe studies of reverse micelles.
    Piletic IR; Tan HS; Fayer MD
    J Phys Chem B; 2005 Nov; 109(45):21273-84. PubMed ID: 16853758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of surface charge on the vibrational dynamics of interfacial water.
    Eftekhari-Bafrooei A; Borguet E
    J Am Chem Soc; 2009 Sep; 131(34):12034-5. PubMed ID: 19663486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast reorientation of dangling OH groups at the air-water interface using femtosecond vibrational spectroscopy.
    Hsieh CS; Campen RK; Vila Verde AC; Bolhuis P; Nienhuys HK; Bonn M
    Phys Rev Lett; 2011 Sep; 107(11):116102. PubMed ID: 22026687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafast Dynamics of Liquid Water: Energy Relaxation and Transfer Processes of the OH Stretch and the HOH Bend.
    Imoto S; Xantheas SS; Saito S
    J Phys Chem B; 2015 Aug; 119(34):11068-78. PubMed ID: 26042611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials.
    Pensack RD; Banyas KM; Barbour LW; Hegadorn M; Asbury JB
    Phys Chem Chem Phys; 2009 Apr; 11(15):2575-91. PubMed ID: 19421513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface.
    Gan W; Wu D; Zhang Z; Feng RR; Wang HF
    J Chem Phys; 2006 Mar; 124(11):114705. PubMed ID: 16555908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collective hydrogen bond reorganization in water studied with temperature-dependent ultrafast infrared spectroscopy.
    Nicodemus RA; Corcelli SA; Skinner JL; Tokmakoff A
    J Phys Chem B; 2011 May; 115(18):5604-16. PubMed ID: 21417373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity.
    van der Post ST; Hsieh CS; Okuno M; Nagata Y; Bakker HJ; Bonn M; Hunger J
    Nat Commun; 2015 Sep; 6():8384. PubMed ID: 26382651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Picosecond IR-UV pump-probe spectroscopic study on the vibrational energy flow in isolated molecules and clusters.
    Yamada Y; Katsumoto Y; Ebata T
    Phys Chem Chem Phys; 2007 Mar; 9(10):1170-85. PubMed ID: 17325763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vibrational coherence transfer characterized with Fourier-transform 2D IR spectroscopy.
    Khalil M; Demirdöven N; Tokmakoff A
    J Chem Phys; 2004 Jul; 121(1):362-73. PubMed ID: 15260555
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reorientation-induced relaxation of free OH at the air/water interface revealed by ultrafast heterodyne-detected nonlinear spectroscopy.
    Inoue KI; Ahmed M; Nihonyanagi S; Tahara T
    Nat Commun; 2020 Oct; 11(1):5344. PubMed ID: 33093482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct dynamics study of ultrafast vibrational energy relaxation in ice Ih.
    Bäcktorp C; Poulsen JA; Nyman G
    J Phys Chem A; 2005 Apr; 109(14):3105-10. PubMed ID: 16833636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrogen-bond disruption by vibrational excitations in water.
    Wang Z; Pang Y; Dlott DD
    J Phys Chem A; 2007 May; 111(17):3196-208. PubMed ID: 17388394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Femtosecond time-resolved and two-dimensional vibrational sum frequency spectroscopic instrumentation to study structural dynamics at interfaces.
    Ghosh A; Smits M; Bredenbeck J; Dijkhuizen N; Bonn M
    Rev Sci Instrum; 2008 Sep; 79(9):093907. PubMed ID: 19044428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vibrational relaxation and coupling of two OH-stretch oscillators with an intramolecular hydrogen bond.
    Lock AJ; Gilijamse JJ; Woutersen S; Bakker HJ
    J Chem Phys; 2004 Feb; 120(5):2351-8. PubMed ID: 15268374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the population, coordination, and orientation of water species contributing to the nonlinear optical spectroscopy of the vapor-water interface through molecular dynamics simulations.
    Walker DS; Hore DK; Richmond GL
    J Phys Chem B; 2006 Oct; 110(41):20451-9. PubMed ID: 17034230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes.
    Kalampounias AG; Tsilomelekis G; Boghosian S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():31-8. PubMed ID: 25048405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time-resolved dynamics of the OH stretching vibration in aqueous NaCl hydrate.
    Pandelov S; Pilles BM; Werhahn JC; Iglev H
    J Phys Chem A; 2009 Sep; 113(38):10184-8. PubMed ID: 19722529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Picosecond IR-UV pump-probe study on the vibrational relaxation of phenol-ethylene hydrogen-bonded cluster: difference of relaxation route/rate between the donor and the acceptor site excitations.
    Yamada Y; Kayano M; Mikami N; Ebata T
    J Phys Chem A; 2006 May; 110(19):6250-5. PubMed ID: 16686458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.