These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17008609)

  • 1. Validity of a virtual environment for stroke rehabilitation.
    Edmans JA; Gladman JR; Cobb S; Sunderland A; Pridmore T; Hilton D; Walker MF
    Stroke; 2006 Nov; 37(11):2770-5. PubMed ID: 17008609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical evaluation of a non-immersive virtual environment in stroke rehabilitation.
    Edmans J; Gladman J; Hilton D; Walker M; Sunderland A; Cobb S; Pridmore T; Thomas S
    Clin Rehabil; 2009 Feb; 23(2):106-16. PubMed ID: 19164398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel virtual reality system integrating online self-face viewing and mirror visual feedback for stroke rehabilitation: rationale and feasibility.
    Shiri S; Feintuch U; Lorber-Haddad A; Moreh E; Twito D; Tuchner-Arieli M; Meiner Z
    Top Stroke Rehabil; 2012; 19(4):277-86. PubMed ID: 22750957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Direct Comparison of Real-World and Virtual Navigation Performance in Chronic Stroke Patients.
    Claessen MH; Visser-Meily JM; de Rooij NK; Postma A; van der Ham IJ
    J Int Neuropsychol Soc; 2016 Apr; 22(4):467-77. PubMed ID: 26689246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stroke Rehabilitation Using Virtual Environments.
    Fu MJ; Knutson JS; Chae J
    Phys Med Rehabil Clin N Am; 2015 Nov; 26(4):747-57. PubMed ID: 26522910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the virtual action planning-supermarket for evaluating executive functions in people with stroke.
    Josman N; Kizony R; Hof E; Goldenberg K; Weiss PL; Klinger E
    J Stroke Cerebrovasc Dis; 2014; 23(5):879-87. PubMed ID: 24008131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of environment and task on gait parameters after stroke: A randomized comparison of measurement conditions.
    Lord SE; Rochester L; Weatherall M; McPherson KM; McNaughton HK
    Arch Phys Med Rehabil; 2006 Jul; 87(7):967-73. PubMed ID: 16813785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task selection and enriched environments: a functional upper extremity training program for stroke survivors.
    Davis JZ
    Top Stroke Rehabil; 2006; 13(3):1-11. PubMed ID: 16987787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a data management tool for investigating multivariate space and free will experiences in virtual reality.
    Morie JF; Iyer K; Luigi DP; Williams J; Dozois A; Rizzo AS
    Appl Psychophysiol Biofeedback; 2005 Sep; 30(3):319-31. PubMed ID: 16167194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and clinical trial of virtual reality-based cognitive assessment in people with stroke: preliminary study.
    Kang YJ; Ku J; Han K; Kim SI; Yu TW; Lee JH; Park CI
    Cyberpsychol Behav; 2008 Jun; 11(3):329-39. PubMed ID: 18537503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A virtual shopping task for the assessment of executive functions: Validity for people with stroke.
    Nir-Hadad SY; Weiss PL; Waizman A; Schwartz N; Kizony R
    Neuropsychol Rehabil; 2017 Jul; 27(5):808-833. PubMed ID: 26558414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the evoked potential P3 component for control in a virtual apartment.
    Bayliss JD
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):113-6. PubMed ID: 12899249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a low cost multiple user virtual environment for rehabilitation (MUVER) of patients with stroke.
    Sivak M; Mavroidis C; Holden MK
    Stud Health Technol Inform; 2009; 142():319-24. PubMed ID: 19377177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strategy for computer-assisted mental practice in stroke rehabilitation.
    Gaggioli A; Meneghini A; Morganti F; Alcaniz M; Riva G
    Neurorehabil Neural Repair; 2006 Dec; 20(4):503-7. PubMed ID: 17082506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor tele-rehabilitation in post-stroke patients.
    Piron L; Tonin P; Trivello E; Battistin L; Dam M
    Med Inform Internet Med; 2004 Jun; 29(2):119-25. PubMed ID: 15370992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing stroke patients' prospective memory using virtual reality.
    Brooks BM; Rose FD; Potter J; Jayawardena S; Morling A
    Brain Inj; 2004 Apr; 18(4):391-401. PubMed ID: 14742152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A virtual reality system for the assessment and rehabilitation of the activities of daily living.
    Lee JH; Ku J; Cho W; Hahn WY; Kim IY; Lee SM; Kang Y; Kim DY; Yu T; Wiederhold BK; Wiederhold MD; Kim SI
    Cyberpsychol Behav; 2003 Aug; 6(4):383-8. PubMed ID: 14511450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment.
    Kizony R; Levin MF; Hughey L; Perez C; Fung J
    Phys Ther; 2010 Feb; 90(2):252-60. PubMed ID: 20023003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of SHERPA (Systematic Human Error Reduction and Prediction Approach) in the development of compensatory cognitive rehabilitation strategies for stroke patients with left and right brain damage.
    Hughes CM; Baber C; Bienkiewicz M; Worthington A; Hazell A; Hermsdörfer J
    Ergonomics; 2015; 58(1):75-95. PubMed ID: 25222822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training in virtual environments: transfer to real world tasks and equivalence to real task training.
    Rose FD; Attree EA; Brooks BM; Parslow DM; Penn PR; Ambihaipahan N
    Ergonomics; 2000 Apr; 43(4):494-511. PubMed ID: 10801083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.