BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 17009093)

  • 1. Inactive and active states and supramolecular organization of GPCRs: insights from computational modeling.
    Fanelli F; De Benedetti PG
    J Comput Aided Mol Des; 2006; 20(7-8):449-61. PubMed ID: 17009093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the structural communication in supramolecular complexes involving GPCRs.
    Fanelli F
    Methods Mol Biol; 2012; 914():319-36. PubMed ID: 22976036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quaternary structure predictions and structural communication features of GPCR dimers.
    Fanelli F; Seeber M; Felline A; Casciari D; Raimondi F
    Prog Mol Biol Transl Sci; 2013; 117():105-42. PubMed ID: 23663967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural features of the inactive and active states of the melanin-concentrating hormone receptors: insights from molecular simulations.
    Vitale RM; Pedone C; De Benedetti PG; Fanelli F
    Proteins; 2004 Aug; 56(3):430-48. PubMed ID: 15229878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational approaches for modeling GPCR dimerization.
    Meng XY; Mezei M; Cui M
    Curr Pharm Biotechnol; 2014; 15(10):996-1006. PubMed ID: 25307013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relevance of rhodopsin studies for GPCR activation.
    Deupi X
    Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications.
    Cvicek V; Goddard WA; Abrol R
    PLoS Comput Biol; 2016 Mar; 12(3):e1004805. PubMed ID: 27028541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of Homology Modeling Assisted Molecular Docking in G-protein Coupled Receptors.
    Bhunia SS; Saxena AK
    Curr Top Med Chem; 2021; 21(4):269-294. PubMed ID: 32901584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The study of G-protein coupled receptor oligomerization with computational modeling and bioinformatics.
    Filizola M; Weinstein H
    FEBS J; 2005 Jun; 272(12):2926-38. PubMed ID: 15955053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The formation of a salt bridge between helices 3 and 6 is responsible for the constitutive activity and lack of hormone responsiveness of the naturally occurring L457R mutation of the human lutropin receptor.
    Zhang M; Mizrachi D; Fanelli F; Segaloff DL
    J Biol Chem; 2005 Jul; 280(28):26169-76. PubMed ID: 15908694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling of intramolecular and intermolecular communication in GPCRs.
    Fanelli F; De Benedetti PG; Raimondi F; Seeber M
    Curr Protein Pept Sci; 2009 Apr; 10(2):173-85. PubMed ID: 19355984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale computational methods for mapping conformational ensembles of G-protein-coupled receptors.
    Vaidehi N; Bhattacharya S
    Adv Protein Chem Struct Biol; 2011; 85():253-80. PubMed ID: 21920326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function.
    Kristiansen K
    Pharmacol Ther; 2004 Jul; 103(1):21-80. PubMed ID: 15251227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of oligomeric β1-adrenergic G protein-coupled receptors in ligand-free basal state.
    Huang J; Chen S; Zhang JJ; Huang XY
    Nat Struct Mol Biol; 2013 Apr; 20(4):419-25. PubMed ID: 23435379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Class A GPCRs: Structure, Function, Modeling and Structure-based Ligand Design.
    Cong X; Topin J; Golebiowski J
    Curr Pharm Des; 2017 Nov; 23(29):4390-4409. PubMed ID: 28699533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening?
    Tang H; Wang XS; Hsieh JH; Tropsha A
    Proteins; 2012 Jun; 80(6):1503-21. PubMed ID: 22275072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying conformational changes in GPCRs: glimpse of a common functional mechanism.
    Dalton JA; Lans I; Giraldo J
    BMC Bioinformatics; 2015 Apr; 16(1):124. PubMed ID: 25902715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and dynamics of G-protein coupled receptors.
    Vaidehi N; Bhattacharya S; Larsen AB
    Adv Exp Med Biol; 2014; 796():37-54. PubMed ID: 24158800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.