BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 17009132)

  • 1. Simultaneous Cd2+, Zn2+, and Pb2+ uptake and accumulation by photosynthetic Euglena gracilis.
    Mendoza-Cózatl DG; Rangel-González E; Moreno-Sánchez R
    Arch Environ Contam Toxicol; 2006 Nov; 51(4):521-8. PubMed ID: 17009132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-course development of the Cd2+ hyper-accumulating phenotype in Euglena gracilis.
    Avilés C; Torres-Márquez ME; Mendoza-Cózatl D; Moreno-Sánchez R
    Arch Microbiol; 2005 Nov; 184(2):83-92. PubMed ID: 16177892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytochelatin-cadmium-sulfide high-molecular-mass complexes of Euglena gracilis.
    Mendoza-Cózatl DG; Rodríguez-Zavala JS; Rodríguez-Enríquez S; Mendoza-Hernandez G; Briones-Gallardo R; Moreno-Sánchez R
    FEBS J; 2006 Dec; 273(24):5703-13. PubMed ID: 17212785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cd2+ transport and storage in the chloroplast of Euglena gracilis.
    Mendoza-Cózatl DG; Moreno-Sánchez R
    Biochim Biophys Acta; 2005 Jan; 1706(1-2):88-97. PubMed ID: 15620368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp.
    Pehlivan E; Yanik BH; Ahmetli G; Pehlivan M
    Bioresour Technol; 2008 Jun; 99(9):3520-7. PubMed ID: 17855082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis.
    Avilés C; Loza-Tavera H; Terry N; Moreno-Sánchez R
    Arch Microbiol; 2003 Jul; 180(1):1-10. PubMed ID: 12739103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium uptake, retention and reduction in photosynthetic Euglena gracilis.
    García-García JD; Rodríguez-Zavala JS; Jasso-Chávez R; Mendoza-Cozatl D; Moreno-Sánchez R
    Arch Microbiol; 2009 May; 191(5):431-40. PubMed ID: 19290509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective transport of Pb2+ and Cd2+ across a phospholipid bilayer by a cyclohexanemonocarboxylic acid-capped 15-crown-5 ether.
    Hamidinia SA; Steinbaugh GE; Erdahl WL; Taylor RW; Pfeiffer DR
    J Inorg Biochem; 2006 Mar; 100(3):403-12. PubMed ID: 16488017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.
    Santiago-Martínez MG; Lira-Silva E; Encalada R; Pineda E; Gallardo-Pérez JC; Zepeda-Rodriguez A; Moreno-Sánchez R; Saavedra E; Jasso-Chávez R
    J Hazard Mater; 2015 May; 288():104-12. PubMed ID: 25698571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p38 MAPK as a signal transduction component of heavy metals stress in Euglena gracilis.
    Rios-Barrera D; Vega-Segura A; Thibert V; Rodríguez-Zavala JS; Torres-Marquez ME
    Arch Microbiol; 2009 Jan; 191(1):47-54. PubMed ID: 18762912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell wall composition affects Cd2+ accumulation and intracellular thiol peptides in marine red algae.
    García-Ríos V; Freile-Pelegrín Y; Robledo D; Mendoza-Cózatl D; Moreno-Sánchez R; Gold-Bouchot G
    Aquat Toxicol; 2007 Feb; 81(1):65-72. PubMed ID: 17161878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective cadmium accumulation using recombinant Escherichia coli.
    Kim SK; Lee BS; Wilson DB; Kim EK
    J Biosci Bioeng; 2005 Feb; 99(2):109-14. PubMed ID: 16233765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal, accumulation and resistance to chromium in heterotrophic Euglena gracilis.
    Lira-Silva E; Ramírez-Lima IS; Olín-Sandoval V; García-García JD; García-Contreras R; Moreno-Sánchez R; Jasso-Chávez R
    J Hazard Mater; 2011 Oct; 193():216-24. PubMed ID: 21831522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of resistance to heavy metals in the protist Euglena gracilis.
    Rodríguez-Zavala JS; García-García JD; Ortiz-Cruz MA; Moreno-Sánchez R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Aug; 42(10):1365-78. PubMed ID: 17680475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous determination of Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ by using second-derivative spectrophotometry method.
    Han Y; Li Y; Si W; Wei D; Yao Z; Zheng X; Du B; Wei Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1546-51. PubMed ID: 21664176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of technetium from solution by algal flagellate Euglena gracilis.
    Ishii N; Uchida S
    J Environ Qual; 2006; 35(6):2017-20. PubMed ID: 17071870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosorption of Pb2+ and Cd2+ in a fixed bed column with immobilised Chorella sp. biomass.
    Almaguer Cantu V; Garza-González MT; de la Rosa JR; Loredo-Medrano JA
    Water Sci Technol; 2008; 58(5):1061-9. PubMed ID: 18824805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence.
    Paraszkiewicz K; Frycie A; Słaba M; Długoński J
    Biometals; 2007 Oct; 20(5):797-805. PubMed ID: 17120141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in the binding modes of phytochelatin to cadmium(II) and zinc(II) ions.
    Kobayashi R; Yoshimura E
    Biol Trace Elem Res; 2006; 114(1-3):313-8. PubMed ID: 17206012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Simultaneous determination of Cd2+, Pb2+, Cu2+ and Zn2+ by reversed-phase high performance liquid chromatography].
    Yin JW; Wang GJ; Xiao ZF
    Se Pu; 2000 Sep; 18(5):436-8. PubMed ID: 12541706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.