These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17009452)

  • 21. A strategy of fast reversible wettability changes of WO3 surfaces between superhydrophilicity and superhydrophobicity.
    Gu C; Zhang J; Tu J
    J Colloid Interface Sci; 2010 Dec; 352(2):573-9. PubMed ID: 20851408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation.
    Li J; Zhao Z; Li D; Tian H; Zha F; Feng H; Guo L
    Nanoscale; 2017 Sep; 9(36):13610-13617. PubMed ID: 28876001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Easy route to the wettability cycling of copper surface between superhydrophobicity and superhydrophilicity.
    Wang G; Zhang TY
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):273-9. PubMed ID: 22148586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface gradient material: from superhydrophobicity to superhydrophilicity.
    Yu X; Wang Z; Jiang Y; Zhang X
    Langmuir; 2006 May; 22(10):4483-6. PubMed ID: 16649753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film.
    Huang L; Lau SP; Yang HY; Leong ES; Yu SF; Prawer S
    J Phys Chem B; 2005 Apr; 109(16):7746-8. PubMed ID: 16851899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Manipulation of surface wettability between superhydrophobicity and superhydrophilicity on copper films.
    Wang S; Feng L; Liu H; Sun T; Zhang X; Jiang L; Zhu D
    Chemphyschem; 2005 Aug; 6(8):1475-8. PubMed ID: 16007711
    [No Abstract]   [Full Text] [Related]  

  • 27. Preparation of smart and reversible wettability cellulose fabrics for oil/water separation using a facile and economical method.
    Fan T; Qian Q; Hou Z; Liu Y; Lu M
    Carbohydr Polym; 2018 Nov; 200():63-71. PubMed ID: 30177209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust Thermoresponsive Polymer Composite Membrane with Switchable Superhydrophilicity and Superhydrophobicity for Efficient Oil-Water Separation.
    Ou R; Wei J; Jiang L; Simon GP; Wang H
    Environ Sci Technol; 2016 Jan; 50(2):906-14. PubMed ID: 26704724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversibly switchable wettability.
    Xin B; Hao J
    Chem Soc Rev; 2010 Feb; 39(2):769-82. PubMed ID: 20111792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A biomimetic surface with switchable contact angle and adhesion for transfer and storage of microdroplets.
    Gao H; Liu Y; Li S; Wang G; Han Z; Ren L
    Nanoscale; 2018 Aug; 10(32):15393-15401. PubMed ID: 30084465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity.
    Lim HS; Kwak D; Lee DY; Lee SG; Cho K
    J Am Chem Soc; 2007 Apr; 129(14):4128-9. PubMed ID: 17358065
    [No Abstract]   [Full Text] [Related]  

  • 32. Ultrathin SiO(x) Film Coating Effect on the Wettability Change of TiO(2) Surfaces in the Presence and Absence of UV Light Illumination.
    Hattori A; Kawahara T; Uemoto T; Suzuki F; Tada H; Ito S
    J Colloid Interface Sci; 2000 Dec; 232(2):410-413. PubMed ID: 11097778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strain-controlled switching of hierarchically wrinkled surfaces between superhydrophobicity and superhydrophilicity.
    Zhang Z; Zhang T; Zhang YW; Kim KS; Gao H
    Langmuir; 2012 Feb; 28(5):2753-60. PubMed ID: 22176536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Smart surface of water-induced superhydrophobicity.
    Wang X; Qing G; Jiang L; Fuchs H; Sun T
    Chem Commun (Camb); 2009 May; (19):2658-60. PubMed ID: 19532912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards a tunable and switchable water adhesion on a TiO(2) nanotube film with patterned wettability.
    Wang D; Liu Y; Liu X; Zhou F; Liu W; Xue Q
    Chem Commun (Camb); 2009 Dec; (45):7018-20. PubMed ID: 19904380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Greatly improved dispersibility of Pt quantum dots in hematite nanoarray and enhanced photoelectrochemical performance.
    Li X; Gu W; Wang F; Yin X; Zhu L; Zou W; Zhang G; Fu Z; Lu Y
    Nanotechnology; 2017 Oct; 28(41):415603. PubMed ID: 28767042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution.
    Gao Y; Masuda Y; Koumoto K
    Langmuir; 2004 Apr; 20(8):3188-94. PubMed ID: 15875847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uphill Water Transport on a Wettability-Patterned Surface: Experimental and Theoretical Results.
    Hirai Y; Mayama H; Matsuo Y; Shimomura M
    ACS Appl Mater Interfaces; 2017 May; 9(18):15814-15821. PubMed ID: 28421741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced wettability performance of ultrathin ZnO nanotubes by coupling morphology and size effects.
    Yang P; Wang K; Liang Z; Mai W; Wang CX; Xie W; Liu P; Zhang L; Cai X; Tan S; Song J
    Nanoscale; 2012 Sep; 4(18):5755-60. PubMed ID: 22895660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible superhydrophilicity and superhydrophobicity on a lotus-leaf pattern.
    de Leon A; Advincula RC
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22666-72. PubMed ID: 25412015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.