BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 17009484)

  • 1. Phase-dependent effects of spinal cord stimulation on locomotor activity.
    Vogelstein RJ; Etienne-Cummings R; Thakor NV; Cohen AH
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):257-65. PubMed ID: 17009484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic control of the central pattern generator for locomotion.
    Vogelstein RJ; Tenore F; Etienne-Cummings R; Lewis MA; Cohen AH
    Biol Cybern; 2006 Dec; 95(6):555-66. PubMed ID: 17139511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotor-related networks in the lumbosacral enlargement of the adult spinal cat: activation through intraspinal microstimulation.
    Guevremont L; Renzi CG; Norton JA; Kowalczewski J; Saigal R; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):266-72. PubMed ID: 17009485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reticulospinal neurons controlling forward and backward swimming in the lamprey.
    Zelenin PV
    J Neurophysiol; 2011 Mar; 105(3):1361-71. PubMed ID: 21248057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The activity of spinal commissural interneurons during fictive locomotion in the lamprey.
    Biró Z; Hill RH; Grillner S
    J Neurophysiol; 2008 Aug; 100(2):716-22. PubMed ID: 18509075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in electrophysiological properties of lamprey spinal motoneurons during fictive swimming.
    Martin MM
    J Neurophysiol; 2002 Nov; 88(5):2463-76. PubMed ID: 12424286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent modulation of adaptation produces a constant burst proportion in a model of the lamprey spinal locomotor generator.
    Ullström M; Kotaleski JH; Tegnér J; Aurell E; Grillner S; Lansner A
    Biol Cybern; 1998 Jul; 79(1):1-14. PubMed ID: 9742673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rostral versus caudal differences in mechanical entrainment of the lamprey central pattern generator for locomotion.
    Tytell ED; Cohen AH
    J Neurophysiol; 2008 May; 99(5):2408-19. PubMed ID: 18256165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a high-voltage-activated IA current with a role in spike timing and locomotor pattern generation.
    Hess D; El Manira A
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5276-81. PubMed ID: 11309504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds.
    Ivanenko YP; Poppele RE; Lacquaniti F
    J Neurophysiol; 2006 Feb; 95(2):602-18. PubMed ID: 16282202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal substrates for state-dependent changes in coordination between motoneuron pools during fictive locomotion in the lamprey spinal cord.
    Mentel T; Cangiano L; Grillner S; Büschges A
    J Neurosci; 2008 Jan; 28(4):868-79. PubMed ID: 18216195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor-like activity involving spinal 5-HT7 and 5-HT2A receptors.
    Liu J; Jordan LM
    J Neurophysiol; 2005 Aug; 94(2):1392-404. PubMed ID: 15872068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotor pattern in the adult zebrafish spinal cord in vitro.
    Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A
    J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The locomotor central pattern generator of the rat spinal cord in vitro is optimally activated by noisy dorsal root waveforms.
    Taccola G
    J Neurophysiol; 2011 Aug; 106(2):872-84. PubMed ID: 21613591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically evoked locomotor activity in the turtle spinal cord hemi-enlargement preparation.
    Samara RF; Currie SN
    Neurosci Lett; 2008 Aug; 441(1):105-9. PubMed ID: 18597937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Staggered multi-site low-frequency electrostimulation effectively induces locomotor patterns in the isolated rat spinal cord.
    Dose F; Deumens R; Forget P; Taccola G
    Spinal Cord; 2016 Feb; 54(2):93-101. PubMed ID: 26099214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identified neurons in the lamprey spinal cord and their roles in fictive swimming.
    Rovainen CM
    Symp Soc Exp Biol; 1983; 37():305-30. PubMed ID: 6679117
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord.
    Cangiano L; Grillner S
    J Neurosci; 2005 Jan; 25(4):923-35. PubMed ID: 15673673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.