These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 17009491)

  • 41. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation.
    Wolbrecht ET; Chan V; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):286-97. PubMed ID: 18586608
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation.
    Veneman JF; Kruidhof R; Hekman EE; Ekkelenkamp R; Van Asseldonk EH; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):379-86. PubMed ID: 17894270
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Body weight supported treadmill and overground training in a patient post cerebrovascular accident.
    Miller EW
    NeuroRehabilitation; 2001; 16(3):155-63. PubMed ID: 11790900
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Novel Elastic Force-Field to Influence Mediolateral Foot Placement During Walking.
    Nyberg ET; Broadway J; Finetto C; Dean JC
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1481-1488. PubMed ID: 27913354
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of Magnetorheological fluid in a force feedback glove.
    Winter SH; Bouzit M
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):2-8. PubMed ID: 17436869
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A patient transfer apparatus between bed and stretcher.
    Wang H; Kasagami F
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):60-7. PubMed ID: 18270082
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computer-controlled mechanical simulation of the artificially ventilated human respiratory system.
    Mesić S; Babuska R; Hoogsteden HC; Verbraak AF
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):731-43. PubMed ID: 12814240
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification.
    Emken JL; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):33-9. PubMed ID: 15813404
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A split-crank bicycle ergometer uses servomotors to provide programmable pedal forces for studies in human biomechanics.
    Van der Loos HF; Worthen-Chaudhari L; Schwandt D; Bevly DM; Kautz SA
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):445-52. PubMed ID: 20378483
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Robot-assisted gait training in multiple sclerosis: a pilot randomized trial.
    Beer S; Aschbacher B; Manoglou D; Gamper E; Kool J; Kesselring J
    Mult Scler; 2008 Mar; 14(2):231-6. PubMed ID: 17942510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design and implementation of robust controllers for a gait trainer.
    Wang FC; Yu CH; Chou TY
    Proc Inst Mech Eng H; 2009 Aug; 223(6):687-96. PubMed ID: 19743635
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of different Lokomat walking conditions on the energy expenditure of hemiparetic patients and healthy subjects.
    Krewer C; Müller F; Husemann B; Heller S; Quintern J; Koenig E
    Gait Posture; 2007 Sep; 26(3):372-7. PubMed ID: 17113774
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques.
    Yu YC; Simaan MA; Mushi SE; Zorn NV
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A two-wire body weight support system for interactive treadmill.
    Kim J; Oh S; Kim J; Kim J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():349-354. PubMed ID: 31374654
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Locomotor training using body-weight support on a treadmill in conjunction with ongoing physical therapy in a child with severe cerebellar ataxia.
    Cernak K; Stevens V; Price R; Shumway-Cook A
    Phys Ther; 2008 Jan; 88(1):88-97. PubMed ID: 17940104
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic Modeling and Simulation of a Body Weight Support System.
    Song Z; Chen W; Wang W; Zhang G
    J Healthc Eng; 2020; 2020():2802574. PubMed ID: 32104557
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ZeroG: overground gait and balance training system.
    Hidler J; Brennan D; Black I; Nichols D; Brady K; Nef T
    J Rehabil Res Dev; 2011; 48(4):287-98. PubMed ID: 21674384
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot.
    van der Kooij H; Veneman J; Ekkelenkamp R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():189-93. PubMed ID: 17946801
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Robotic personal aids for mobility and monitoring for the elderly.
    Spenko M; Yu H; Dubowsky S
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):344-51. PubMed ID: 17009494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.