BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17009600)

  • 1. Induction of physiological thermotolerance in MDCK monolayers: contribution of heat shock protein 70.
    Dokladny K; Wharton W; Lobb R; Ma TY; Moseley PL
    Cell Stress Chaperones; 2006; 11(3):268-75. PubMed ID: 17009600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of cross-tolerance following heat and cadmium exposure in functional MDCK monolayers.
    Dokladny K; Wharton W; Ma TY; Moseley PL
    J Appl Toxicol; 2008 Oct; 28(7):885-94. PubMed ID: 18418844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo chaperone activity of heat shock protein 70 and thermotolerance.
    Nollen EA; Brunsting JF; Roelofsen H; Weber LA; Kampinga HH
    Mol Cell Biol; 1999 Mar; 19(3):2069-79. PubMed ID: 10022894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of Hsp70 and Hsp27 in lens epithelial cells in contused eye of rat modulated by thermotolerance or quercetin.
    Yao K; Rao H; Wu R; Tang X; Xu W
    Mol Vis; 2006 May; 12():445-50. PubMed ID: 16710168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells.
    Manwell LA; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):521-30. PubMed ID: 17681842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecologically Relevant Temperature Ramping Rates Enhance the Protective Heat Shock Response in an Intertidal Ectotherm.
    Harada AE; Burton RS
    Physiol Biochem Zool; 2019; 92(2):152-162. PubMed ID: 30694107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal stress induces epithelial permeability.
    Moseley PL; Gapen C; Wallen ES; Walter ME; Peterson MW
    Am J Physiol; 1994 Aug; 267(2 Pt 1):C425-34. PubMed ID: 8074177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro effect of focused ultrasound or thermal stress on HSP70 expression and cell viability in three tumor cell lines.
    Hundt W; O'Connell-Rodwell CE; Bednarski MD; Steinbach S; Guccione S
    Acad Radiol; 2007 Jul; 14(7):859-70. PubMed ID: 17574136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of prostaglandin A1-induced thermotolerance by quercetin in human leukemic cells: role of heat shock protein 70.
    Elia G; Amici C; Rossi A; Santoro MG
    Cancer Res; 1996 Jan; 56(1):210-7. PubMed ID: 8548766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous exposure of Xenopus A6 kidney epithelial cells to concurrent mild sodium arsenite and heat stress results in enhanced hsp30 and hsp70 gene expression and the acquisition of thermotolerance.
    Young JT; Gauley J; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Aug; 153(4):417-24. PubMed ID: 19358893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of desiccation and starvation on thermal tolerance and the heat-shock response in forest ants.
    Nguyen AD; DeNovellis K; Resendez S; Pustilnik JD; Gotelli NJ; Parker JD; Cahan SH
    J Comp Physiol B; 2017 Dec; 187(8):1107-1116. PubMed ID: 28439669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Hsp90 function delays and impairs recovery from heat shock.
    Duncan RF
    FEBS J; 2005 Oct; 272(20):5244-56. PubMed ID: 16218955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones.
    Zhang Y; Huang L; Zhang J; Moskophidis D; Mivechi NF
    J Cell Biochem; 2002; 86(2):376-93. PubMed ID: 12112007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential heat shock gene hsp70-1 response to toxicants revealed by in vivo study of lungs in transgenic mice.
    Wirth D; Christians E; Munaut C; Dessy C; Foidart JM; Gustin P
    Cell Stress Chaperones; 2002 Oct; 7(4):387-95. PubMed ID: 12653483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into regulation and function of the major stress-induced hsp70 molecular chaperone in vivo: analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 gene.
    Huang L; Mivechi NF; Moskophidis D
    Mol Cell Biol; 2001 Dec; 21(24):8575-91. PubMed ID: 11713291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration.
    Gong WJ; Golic KG
    Genetics; 2006 Jan; 172(1):275-86. PubMed ID: 16204210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression patterns among heat-shock protein genes and thermal responses in the whitefly Bemisia tabaci (MEAM 1).
    Díaz F; Orobio RF; Chavarriaga P; Toro-Perea N
    J Therm Biol; 2015 Aug; 52():199-207. PubMed ID: 26267515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of thermotolerance development through cycloheximide-induced negative control of stress protein gene expression.
    Akagawa H; Ishii A; Mizuno S
    J Biochem; 1998 Feb; 123(2):226-32. PubMed ID: 9538196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis.
    Rahlff J; Peters J; Moyano M; Pless O; Claussen C; Peck MA
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Jan; 203():348-358. PubMed ID: 27825870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.