BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17009925)

  • 1. Carbonyl reductases: the complex relationships of mammalian carbonyl- and quinone-reducing enzymes and their role in physiology.
    Oppermann U
    Annu Rev Pharmacol Toxicol; 2007; 47():293-322. PubMed ID: 17009925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human carbonyl reductases.
    Malátková P; Maser E; Wsól V
    Curr Drug Metab; 2010 Oct; 11(8):639-58. PubMed ID: 20942781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of four rabbit aldo-keto reductases featuring broad substrate specificity for xenobiotic and endogenous carbonyl compounds: relationship with multiple forms of drug ketone reductases.
    Endo S; Matsunaga T; Arai Y; Ikari A; Tajima K; El-Kabbani O; Yamano S; Hara A; Kitade Y
    Drug Metab Dispos; 2014 Apr; 42(4):803-12. PubMed ID: 24510382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rabbit 3-hydroxyhexobarbital dehydrogenase is a NADPH-preferring reductase with broad substrate specificity for ketosteroids, prostaglandin D₂, and other endogenous and xenobiotic carbonyl compounds.
    Endo S; Matsunaga T; Matsumoto A; Arai Y; Ohno S; El-Kabbani O; Tajima K; Bunai Y; Yamano S; Hara A; Kitade Y
    Biochem Pharmacol; 2013 Nov; 86(9):1366-75. PubMed ID: 23994167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonyl reductase provides the enzymatic basis of quinone detoxication in man.
    Wermuth B; Platts KL; Seidel A; Oesch F
    Biochem Pharmacol; 1986 Apr; 35(8):1277-82. PubMed ID: 3083821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human microsomal carbonyl reducing enzymes in the metabolism of xenobiotics: well-known and promising members of the SDR superfamily.
    Skarydová L; Wsól V
    Drug Metab Rev; 2012 May; 44(2):173-91. PubMed ID: 22181347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily.
    Hoffmann F; Maser E
    Drug Metab Rev; 2007; 39(1):87-144. PubMed ID: 17364882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on reduction of S-nitrosoglutathione by human carbonyl reductases 1 and 3.
    Staab CA; Hartmanová T; El-Hawari Y; Ebert B; Kisiela M; Wsol V; Martin HJ; Maser E
    Chem Biol Interact; 2011 May; 191(1-3):95-103. PubMed ID: 21256830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The modulation of carbonyl reductase 1 by polyphenols.
    Boušová I; Skálová L; Souček P; Matoušková P
    Drug Metab Rev; 2015; 47(4):520-33. PubMed ID: 26415702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplicity of mammalian reductases for xenobiotic carbonyl compounds.
    Matsunaga T; Shintani S; Hara A
    Drug Metab Pharmacokinet; 2006 Feb; 21(1):1-18. PubMed ID: 16547389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonyl reductase.
    Forrest GL; Gonzalez B
    Chem Biol Interact; 2000 Dec; 129(1-2):21-40. PubMed ID: 11154733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for substrate specificity in human monomeric carbonyl reductases.
    Pilka ES; Niesen FH; Lee WH; El-Hawari Y; Dunford JE; Kochan G; Wsol V; Martin HJ; Maser E; Oppermann U
    PLoS One; 2009 Oct; 4(10):e7113. PubMed ID: 19841672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the substrate-binding site of human carbonyl reductases CBR1 and CBR3 by site-directed mutagenesis.
    El-Hawari Y; Favia AD; Pilka ES; Kisiela M; Oppermann U; Martin HJ; Maser E
    Chem Biol Interact; 2009 Mar; 178(1-3):234-41. PubMed ID: 19061875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonyl reductases from Daphnia are regulated by redox cycling compounds.
    Ebert B; Ebert D; Koebsch K; Maser E; Kisiela M
    FEBS J; 2018 Aug; 285(15):2869-2887. PubMed ID: 29893480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MDR quinone oxidoreductases: the human and yeast zeta-crystallins.
    Porté S; Crosas E; Yakovtseva E; Biosca JA; Farrés J; Fernández MR; Parés X
    Chem Biol Interact; 2009 Mar; 178(1-3):288-94. PubMed ID: 19007762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of the substrate-binding loop region of human monomeric carbonyl reductases in catalysis and coenzyme binding.
    Miura T; Nishinaka T; Terada T
    Life Sci; 2009 Aug; 85(7-8):303-8. PubMed ID: 19555696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and structural aspects of xenobiotic carbonyl metabolizing enzymes. Role of reductases and dehydrogenases in xenobiotic phase I reactions.
    Oppermann UC; Maser E
    Toxicology; 2000 Apr; 144(1-3):71-81. PubMed ID: 10781873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-nitrosoglutathione covalently modifies cysteine residues of human carbonyl reductase 1 and affects its activity.
    Hartmanová T; Tambor V; Lenčo J; Staab-Weijnitz CA; Maser E; Wsól V
    Chem Biol Interact; 2013 Feb; 202(1-3):136-45. PubMed ID: 23295225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polycyclic aromatic hydrocarbon quinone-mediated oxidation reduction cycling catalyzed by a human placental NADPH-linked carbonyl reductase.
    Jarabak J
    Arch Biochem Biophys; 1991 Dec; 291(2):334-8. PubMed ID: 1659323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonyl reductase sniffer from the model organism daphnia: Cloning, substrate determination and inhibitory sensitivity.
    Strehse JS; Protopapas N; Maser E
    Chem Biol Interact; 2019 Jul; 307():29-36. PubMed ID: 30991043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.