BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17010096)

  • 1. Dissociation of food and opiate preference by a genetic mutation in zebrafish.
    Lau B; Bretaud S; Huang Y; Lin E; Guo S
    Genes Brain Behav; 2006 Oct; 5(7):497-505. PubMed ID: 17010096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish.
    Bretaud S; Li Q; Lockwood BL; Kobayashi K; Lin E; Guo S
    Neuroscience; 2007 May; 146(3):1109-16. PubMed ID: 17428610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphine sex-dependently induced place conditioning in adult Wistar rats.
    Karami M; Zarrindast MR
    Eur J Pharmacol; 2008 Mar; 582(1-3):78-87. PubMed ID: 18191832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeated pre-exposure to morphine into the ventral pallidum enhances morphine-induced place preference: involvement of dopaminergic and opioidergic mechanisms.
    Zarrindast MR; Ebrahimi-Ghiri M; Rostami P; Rezayof A
    Behav Brain Res; 2007 Jul; 181(1):35-41. PubMed ID: 17451818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumbal dopamine and serotonin activity throughout acquisition and expression of place conditioning: correlative relationships with preference and aversion.
    Weitemier AZ; Murphy NP
    Eur J Neurosci; 2009 Mar; 29(5):1015-26. PubMed ID: 19245370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A test of the opponent-process theory of motivation using lesions that selectively block morphine reward.
    Vargas-Perez H; Ting-A-Kee RA; Heinmiller A; Sturgess JE; van der Kooy D
    Eur J Neurosci; 2007 Jun; 25(12):3713-8. PubMed ID: 17610590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphine self-administration into the lateral septum depends on dopaminergic mechanisms: Evidence from pharmacology and Fos neuroimaging.
    Le Merrer J; Gavello-Baudy S; Galey D; Cazala P
    Behav Brain Res; 2007 Jun; 180(2):203-17. PubMed ID: 17467070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential involvement of the opioid receptor antagonist naloxone in motivational and hedonic aspects of reward.
    Schneider M; Heise V; Spanagel R
    Behav Brain Res; 2010 Apr; 208(2):466-72. PubMed ID: 20035797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycyl-glutamine, an endogenous beta-endorphin-derived peptide, inhibits morphine-induced conditioned place preference, tolerance, dependence, and withdrawal.
    Cavun S; Göktalay G; Millington WR
    J Pharmacol Exp Ther; 2005 Nov; 315(2):949-58. PubMed ID: 16079299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine.
    Webb KJ; Norton WH; Trümbach D; Meijer AH; Ninkovic J; Topp S; Heck D; Marr C; Wurst W; Theis FJ; Spaink HP; Bally-Cuif L
    Genome Biol; 2009; 10(7):R81. PubMed ID: 19646228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nalbuphine is effective in decreasing the rewarding effect induced by morphine in rats.
    Tao PL; Liang KW; Sung WY; Wu YT; Huang EY
    Drug Alcohol Depend; 2006 Sep; 84(2):175-81. PubMed ID: 16517095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex versus sweet: opposite effects of opioid drugs on the reward of sucrose and sexual pheromones.
    Agustín-Pavón C; Martínez-Ricós J; Martínez-García F; Lanuza E
    Behav Neurosci; 2008 Apr; 122(2):416-25. PubMed ID: 18410180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of cholestasis on rewarding and exploratory behaviors induced by opioidergic and dopaminergic agents in mice.
    Ebrahimi-ghiri M; Nasehi M; Rostami P; Mohseni-Kouchesfehani H; Zarrindast MR
    Arch Iran Med; 2012 Oct; 15(10):617-24. PubMed ID: 23020537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-craving drugs acamprosate and naloxone do not reduce expression of morphine conditioned place preference in isolated and group-housed rats.
    Herzig V; Schmidt WJ
    Neurosci Lett; 2005 Feb; 374(2):119-23. PubMed ID: 15644276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain reward deficits accompany naloxone-precipitated withdrawal from acute opioid dependence.
    Liu J; Schulteis G
    Pharmacol Biochem Behav; 2004 Sep; 79(1):101-8. PubMed ID: 15388289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mu-opioid receptor and CREB activation are required for nicotine reward.
    Walters CL; Cleck JN; Kuo YC; Blendy JA
    Neuron; 2005 Jun; 46(6):933-43. PubMed ID: 15953421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methionine Supplementation Abolishes Nicotine-Induced Place Preference in Zebrafish: a Behavioral and Molecular Analysis.
    Pisera-Fuster A; Zwiller J; Bernabeu R
    Mol Neurobiol; 2021 Jun; 58(6):2590-2607. PubMed ID: 33475949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learned preferences induced by electrical stimulation of a food-related area of the parabrachial complex: effects of naloxone.
    Simon MJ; Garcia R; Zafra MA; Molina F; Puerto A
    Neurobiol Learn Mem; 2007 Mar; 87(3):332-42. PubMed ID: 17084647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zebrafish and conditioned place preference: a translational model of drug reward.
    Collier AD; Khan KM; Caramillo EM; Mohn RS; Echevarria DJ
    Prog Neuropsychopharmacol Biol Psychiatry; 2014 Dec; 55():16-25. PubMed ID: 24887295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio).
    Swain HA; Sigstad C; Scalzo FM
    Neurotoxicol Teratol; 2004; 26(6):725-9. PubMed ID: 15451036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.