These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 17010163)

  • 1. Effect of sulfur-containing compounds on Bacillus cellulosome-associated 'CMCase' and 'Avicelase' activities.
    Beukes N; Pletschke BI
    FEMS Microbiol Lett; 2006 Nov; 264(2):226-31. PubMed ID: 17010163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions.
    Waeonukul R; Kyu KL; Sakka K; Ratanakhanokchai K
    J Biosci Bioeng; 2009 Jun; 107(6):610-4. PubMed ID: 19447336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexes.
    Fendri I; Tardif C; Fierobe HP; Lignon S; Valette O; Pagès S; Perret S
    FEBS J; 2009 Jun; 276(11):3076-86. PubMed ID: 19490109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of multiple copies of cohesins on cellulase and hemicellulase activities of Clostridium cellulovorans mini-cellulosomes.
    Cha J; Matsuoka S; Chan H; Yukawa H; Inui M; Doi RH
    J Microbiol Biotechnol; 2007 Nov; 17(11):1782-8. PubMed ID: 18092461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes.
    Mingardon F; Chanal A; López-Contreras AM; Dray C; Bayer EA; Fierobe HP
    Appl Environ Microbiol; 2007 Jun; 73(12):3822-32. PubMed ID: 17468286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulosomes-structure and ultrastructure.
    Bayer EA; Shimon LJ; Shoham Y; Lamed R
    J Struct Biol; 1998 Dec; 124(2-3):221-34. PubMed ID: 10049808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity.
    Caspi J; Irwin D; Lamed R; Li Y; Fierobe HP; Wilson DB; Bayer EA
    J Biotechnol; 2008 Jul; 135(4):351-7. PubMed ID: 18582975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular Organization of the Thermobifida fusca Exoglucanase Cel6B Impacts Cellulose Hydrolysis and Designer Cellulosome Efficiency.
    Setter-Lamed E; Moraïs S; Stern J; Lamed R; Bayer EA
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28901714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers.
    Doi RH
    Ann N Y Acad Sci; 2008 Mar; 1125():267-79. PubMed ID: 18096849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clostridium clariflavum: Key Cellulosome Players Are Revealed by Proteomic Analysis.
    Artzi L; Morag E; Barak Y; Lamed R; Bayer EA
    mBio; 2015 May; 6(3):e00411-15. PubMed ID: 25991683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cellulosome--a treasure-trove for biotechnology.
    Bayer EA; Morag E; Lamed R
    Trends Biotechnol; 1994 Sep; 12(9):379-86. PubMed ID: 7765191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum.
    Ravachol J; Borne R; Tardif C; de Philip P; Fierobe HP
    J Biol Chem; 2014 Mar; 289(11):7335-48. PubMed ID: 24451379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turning a potent family-9 free cellulase into an operational cellulosomal component and vice versa.
    Vita N; Borne R; Perret S; de Philip P; Fierobe HP
    FEBS J; 2019 Sep; 286(17):3359-3373. PubMed ID: 31004451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain.
    Tachaapaikoon C; Kosugi A; Pason P; Waeonukul R; Ratanakhanokchai K; Kyu KL; Arai T; Murata Y; Mori Y
    Biodegradation; 2012 Feb; 23(1):57-68. PubMed ID: 21637976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Thermal Stability of Cellulosomal Hydrolases and Their Complex Formation.
    Kahn A; Galanopoulou AP; Hatzinikolaou DG; Moraïs S; Bayer EA
    Methods Mol Biol; 2018; 1796():153-166. PubMed ID: 29856053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol.
    Xu C; Qin Y; Li Y; Ji Y; Huang J; Song H; Xu J
    Bioresour Technol; 2010 Dec; 101(24):9560-9. PubMed ID: 20702089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation.
    Chen C; Cui Z; Song X; Liu YJ; Cui Q; Feng Y
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2203-12. PubMed ID: 26521249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rosettazyme: a synthetic cellulosome.
    Mitsuzawa S; Kagawa H; Li Y; Chan SL; Paavola CD; Trent JD
    J Biotechnol; 2009 Aug; 143(2):139-44. PubMed ID: 19559062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes.
    Morag E; Bayer EA; Lamed R
    J Bacteriol; 1990 Oct; 172(10):6098-105. PubMed ID: 2211528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use.
    Ljungdahl LG
    Ann N Y Acad Sci; 2008 Mar; 1125():308-21. PubMed ID: 18378601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.