These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 17010230)
1. Lactic acid fermentation stimulated iron absorption by Caco-2 cells is associated with increased soluble iron content in carrot juice. Bergqvist SW; Andlid T; Sandberg AS Br J Nutr; 2006 Oct; 96(4):705-11. PubMed ID: 17010230 [TBL] [Abstract][Full Text] [Related]
2. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)). Scheers N; Rossander-Hulthen L; Torsdottir I; Sandberg AS Eur J Nutr; 2016 Feb; 55(1):373-82. PubMed ID: 25672527 [TBL] [Abstract][Full Text] [Related]
3. Viable, lyophilized lactobacilli do not increase iron absorption from a lactic acid-fermented meal in healthy young women, and no iron absorption occurs in the distal intestine. Bering S; Sjøltov L; Wrisberg SS; Berggren A; Alenfall J; Jensen M; Højgaard L; Tetens I; Bukhave K Br J Nutr; 2007 Nov; 98(5):991-7. PubMed ID: 17764597 [TBL] [Abstract][Full Text] [Related]
4. Lactic acid decreases Fe(II) and Fe(III) retention but increases Fe(III) transepithelial transfer by Caco-2 cells. Bergqvist SW; Sandberg AS; Andlid T; Wessling-Resnick M J Agric Food Chem; 2005 Aug; 53(17):6919-23. PubMed ID: 16104821 [TBL] [Abstract][Full Text] [Related]
5. Iron and zinc bioavailabilities to pigs from red and white beans (Phaseolus vulgaris L.) are similar. Tako E; Glahn RP; Laparra JM; Welch RM; Lei X; Kelly JD; Rutzke MA; Miller DD J Agric Food Chem; 2009 Apr; 57(8):3134-40. PubMed ID: 19368350 [TBL] [Abstract][Full Text] [Related]
6. Meat and ascorbic acid can promote Fe availability from Fe-phytate but not from Fe-tannic acid complexes. Engle-Stone R; Yeung A; Welch R; Glahn R J Agric Food Chem; 2005 Dec; 53(26):10276-84. PubMed ID: 16366727 [TBL] [Abstract][Full Text] [Related]
7. Effect of process parameters on the production and drying of Leuconostoc mesenteroides cultures. Champagne CP; Gardner NJ J Ind Microbiol Biotechnol; 2002 May; 28(5):291-6. PubMed ID: 11986934 [TBL] [Abstract][Full Text] [Related]
8. Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a Caco-2 cell culture model. Zhu L; Glahn RP; Nelson D; Miller DD J Agric Food Chem; 2009 Jun; 57(11):5014-9. PubMed ID: 19449807 [TBL] [Abstract][Full Text] [Related]
9. Fermentation and lactic acid addition enhance iron bioavailability of maize. Proulx AK; Reddy MB J Agric Food Chem; 2007 Apr; 55(7):2749-54. PubMed ID: 17355139 [TBL] [Abstract][Full Text] [Related]
10. Bioavailability of iron and zinc from multiple micronutrient fortified beverage premixes in Caco-2 cell model. Pullakhandam R; Nair KM; Pamini H; Punjal R J Food Sci; 2011 Mar; 76(2):H38-42. PubMed ID: 21535765 [TBL] [Abstract][Full Text] [Related]
11. [Effects of ascorbic acid and citric acid on iron bioavailability in an in vitro digestion/ Caco-2 cell culture model]. Lei J; Zhang MQ; Huang CY; Bai L; He ZH Nan Fang Yi Ke Da Xue Xue Bao; 2008 Oct; 28(10):1743-7. PubMed ID: 18971162 [TBL] [Abstract][Full Text] [Related]
12. Bioaccessibility of calcium, iron and zinc from three legume samples. Sahuquillo A; Barberá R; Farré R Nahrung; 2003 Dec; 47(6):438-41. PubMed ID: 14727775 [TBL] [Abstract][Full Text] [Related]
13. Assessment of concentrations of iron and zinc and bioavailable iron in grains of early-maturing tropical maize varieties. Oikeh SO; Menkir A; Maziya-Dixon B; Welch R; Glahn RP J Agric Food Chem; 2003 Jun; 51(12):3688-94. PubMed ID: 12769546 [TBL] [Abstract][Full Text] [Related]
14. Intake of Maillard reaction products reduces iron bioavailability in male adolescents. García MM; Seiquer I; Delgado-Andrade C; Galdó G; Navarro MP Mol Nutr Food Res; 2009 Dec; 53(12):1551-60. PubMed ID: 19753604 [TBL] [Abstract][Full Text] [Related]
15. [Modeling of lactic acid fermentation of leguminous plant juices]. Shurkhno RA; Validov ShZ; Boronin AM; Naumova RP Prikl Biokhim Mikrobiol; 2006; 42(2):229-35. PubMed ID: 16761580 [TBL] [Abstract][Full Text] [Related]
16. Effects of ascorbic acid, phytic acid and tannic acid on iron bioavailability from reconstituted ferritin measured by an in vitro digestion-Caco-2 cell model. Jin F; Frohman C; Thannhauser TW; Welch RM; Glahn RP Br J Nutr; 2009 Apr; 101(7):972-81. PubMed ID: 18755051 [TBL] [Abstract][Full Text] [Related]
17. Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains. Hemalatha S; Platel K; Srinivasan K Eur J Clin Nutr; 2007 Mar; 61(3):342-8. PubMed ID: 16969377 [TBL] [Abstract][Full Text] [Related]
18. Bioavailability of anthocyanins from purple carrot juice: effects of acylation and plant matrix. Charron CS; Kurilich AC; Clevidence BA; Simon PW; Harrison DJ; Britz SJ; Baer DJ; Novotny JA J Agric Food Chem; 2009 Feb; 57(4):1226-30. PubMed ID: 19166298 [TBL] [Abstract][Full Text] [Related]
19. Development of a modified Caco-2 cell model system for studying iron availability in eggs. Thompson B; Sharp P; Elliott R; Al-Mutairi S; Fairweather-Tait SJ J Agric Food Chem; 2010 Mar; 58(6):3833-9. PubMed ID: 20170171 [TBL] [Abstract][Full Text] [Related]
20. A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age. Bering S; Suchdev S; Sjøltov L; Berggren A; Tetens I; Bukhave K Br J Nutr; 2006 Jul; 96(1):80-5. PubMed ID: 16869994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]