These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17010985)

  • 1. Control of the electrical conductivity of composites of antimony doped tin oxide (ATO) nanoparticles and acrylate by grafting of 3-methacryloxypropyltrimethoxysilane (MPS).
    Posthumus W; Laven J; de With G; van der Linde R
    J Colloid Interface Sci; 2006 Dec; 304(2):394-401. PubMed ID: 17010985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane.
    Posthumus W; Magusin PC; Brokken-Zijp JC; Tinnemans AH; van der Linde R
    J Colloid Interface Sci; 2004 Jan; 269(1):109-16. PubMed ID: 14651902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the percolation threshold and electrical conductivity of self-assembled antimony-doped tin oxide nanoparticles into ordered structures in PMMA/ATO nanocomposites.
    Jin Y; Gerhardt RA
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22264-71. PubMed ID: 25427537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous latex/ceramic nanoparticle dispersions: colloidal stability and coating properties.
    Sun J; Velamakanni BV; Gerberich WW; Francis LF
    J Colloid Interface Sci; 2004 Dec; 280(2):387-99. PubMed ID: 15533412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of superhydrophobic and heat-insulating antimony doped tin oxide/polyurethane films by cast replica micromolding.
    Feng J; Huang B; Zhong M
    J Colloid Interface Sci; 2009 Aug; 336(1):268-72. PubMed ID: 19394955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-SEM studies of latex/ceramic nanoparticle coating microstructure development.
    Luo H; Scriven LE; Francis LF
    J Colloid Interface Sci; 2007 Dec; 316(2):500-9. PubMed ID: 17854820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast electron transfer between molecule adsorbate and antimony doped tin oxide (ATO) nanoparticles.
    Guo J; She C; Lian T
    J Phys Chem B; 2005 Apr; 109(15):7095-102. PubMed ID: 16851808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimony tin oxide (ATO) nanoparticle formation from H2O2 solutions: a new generic film coating from basic solutions.
    Sladkevich S; Mikhaylov AA; Prikhodchenko PV; Tripol'skaya TA; Lev O
    Inorg Chem; 2010 Oct; 49(20):9110-2. PubMed ID: 20863083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites.
    Kim JW; Kim LU; Kim CK
    Biomacromolecules; 2007 Jan; 8(1):215-22. PubMed ID: 17206810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun antimony doped tin oxide (ATO) nanofibers as a versatile conducting matrix.
    Ostermann R; Zieba R; Rudolph M; Schlettwein D; Smarsly BM
    Chem Commun (Camb); 2011 Nov; 47(44):12119-21. PubMed ID: 22003493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of tin oxide nanoparticles: localized percolating network formation in polymer matrix.
    Wakabayashi A; Sasakawa Y; Dobashi T; Yamamoto T
    Langmuir; 2006 Oct; 22(22):9260-3. PubMed ID: 17042540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sol-gel-derived composite antimony-doped, tin oxide-coated clay-silicate semitransparent and conductive electrodes.
    Sadeh A; Sladkevich S; Gelman F; Prikhodchenko P; Baumberg I; Berezin O; Lev O
    Anal Chem; 2007 Jul; 79(14):5188-95. PubMed ID: 17555295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optically transparent conductive network formation induced by solvent evaporation from tin-oxide-nanoparticle suspensions.
    Wakabayashi A; Sasakawa Y; Dobashi T; Yamamoto T
    Langmuir; 2007 Jul; 23(15):7990-4. PubMed ID: 17579465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films.
    Schmidt RH; Kinloch IA; Burgess AN; Windle AH
    Langmuir; 2007 May; 23(10):5707-12. PubMed ID: 17417882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inkjet-printing of antimony-doped tin oxide (ATO) films for transparent conducting electrodes.
    Lim J; Jeong BY; Yoon HG; Lee SN; Kim J
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1675-8. PubMed ID: 22630027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles of antimony doped tin dioxide as a liquid petroleum gas sensor: effect of size on sensitivity.
    Banerjee S; Bumajdad A; Devi PS
    Nanotechnology; 2011 Jul; 22(27):275506. PubMed ID: 21613735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable solar-heat shielding property of transparent films based on mesoporous Sb-doped SnO₂ microspheres.
    Li Y; Liu J; Liang J; Yu X; Li D
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6574-83. PubMed ID: 25774799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Conductive Sb-SnO
    Chen Q; Thimsen E
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25168-25177. PubMed ID: 32393020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ordered mesoporous Sb-, Nb-, and Ta-doped SnO2 thin films with adjustable doping levels and high electrical conductivity.
    Wang Y; Brezesinski T; Antonietti M; Smarsly B
    ACS Nano; 2009 Jun; 3(6):1373-8. PubMed ID: 19435371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of charge transfer effect in Surface-Enhanced Raman scattering (SERS) by using Antimony-doped tin oxide (ATO) nanoparticles as substrates with tunable optical band gaps and free charge carrier densities.
    Zhang M; Wang Y; Ma Y; Wang X; Zhao B; Ruan W
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120288. PubMed ID: 34455383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.