These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 17011111)

  • 1. A test for measuring the effects of enzyme inactivation.
    Schnell S; Hanson SM
    Biophys Chem; 2007 Feb; 125(2-3):269-74. PubMed ID: 17011111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables.
    Liao F; Zhu XY; Wang YM; Zuo YP
    J Biochem Biophys Methods; 2005 Jan; 62(1):13-24. PubMed ID: 15656940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact.
    Fischer E; Keleti T
    Acta Biochim Biophys Acad Sci Hung; 1975; 10(3):221-7. PubMed ID: 1211106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and active site dynamics of Staphylococcus aureus arsenate reductase.
    Messens J; Martins JC; Brosens E; Van Belle K; Jacobs DM; Willem R; Wyns L
    J Biol Inorg Chem; 2002 Jan; 7(1-2):146-56. PubMed ID: 11862551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface enzyme kinetics for biopolymer microarrays: a combination of Langmuir and Michaelis-Menten concepts.
    Lee HJ; Wark AW; Goodrich TT; Fang S; Corn RM
    Langmuir; 2005 Apr; 21(9):4050-7. PubMed ID: 15835973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Enzyme inactivation in the reaction process. Regulatory role].
    Varfolomeev SD
    Biokhimiia; 1984 May; 49(5):723-35. PubMed ID: 6743701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The kinetic basis of a general method for the investigation of active site content of enzymes and catalytic antibodies: first-order behaviour under single-turnover and cycling conditions.
    Topham CM; Gul S; Resmini M; Sonkaria S; Gallacher G; Brocklehurst K
    J Theor Biol; 2000 May; 204(2):239-56. PubMed ID: 10887904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis-Menten constant.
    Rami Tzafriri A; Edelman ER
    J Theor Biol; 2007 Apr; 245(4):737-48. PubMed ID: 17234216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized theoretical and practical treatment of the kinetics of an enzyme-catalyzed reaction in the presence of an enzyme equimolar irreversible inhibitor.
    Golicnik M; Stojan J
    J Chem Inf Comput Sci; 2003; 43(5):1486-93. PubMed ID: 14502482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Master equation approach to single oligomeric enzyme catalysis: mechanically controlled further catalysis.
    Das B; Gangopadhyay G
    J Chem Phys; 2010 Apr; 132(13):135102. PubMed ID: 20387959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity of the Michaelis-Menten equation--steady-state or reactant stationary assumption: that is the question.
    Schnell S
    FEBS J; 2014 Jan; 281(2):464-72. PubMed ID: 24245583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized rate equation for single-substrate enzyme catalyzed reactions.
    Kargi F
    Biochem Biophys Res Commun; 2009 Apr; 382(1):157-9. PubMed ID: 19265680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Computational method for determining the Michaelis-Menten constant and the maximum value of effect].
    Kozlov AG
    Farmakol Toksikol; 1986; 49(2):86-8. PubMed ID: 3709785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of conformational dynamics in kinetics of an enzymatic cycle in a nonequilibrium steady state.
    Min W; Xie XS; Bagchi B
    J Chem Phys; 2009 Aug; 131(6):065104. PubMed ID: 19691414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation theory in the catalytic rate constant of the Henri-Michaelis-Menten enzymatic reaction.
    Bakalis E; Kosmas M; Papamichael EM
    Bull Math Biol; 2012 Nov; 74(11):2535-46. PubMed ID: 22926529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comment on "Arsenic (III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California".
    Schoepp-Cothenet B; Duval S; Santini JM; Nitschke W
    Science; 2009 Jan; 323(5914):583; author reply 583. PubMed ID: 19179513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis.
    Min W; Xie XS; Bagchi B
    J Phys Chem B; 2008 Jan; 112(2):454-66. PubMed ID: 18085768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamentals of Enzyme Kinetics: Michaelis-Menten and Non-Michaelis-Type (Atypical) Enzyme Kinetics.
    Seibert E; Tracy TS
    Methods Mol Biol; 2021; 2342():3-27. PubMed ID: 34272689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule Michaelis-Menten equations.
    Kou SC; Cherayil BJ; Min W; English BP; Xie XS
    J Phys Chem B; 2005 Oct; 109(41):19068-81. PubMed ID: 16853459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Evaluation of kinetic parameters of unpurified enzymic systems, method for measuring the concentration of endogenous substrate].
    Potapov AP
    Biofizika; 1981; 26(3):434-6. PubMed ID: 7260154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.