These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17011511)

  • 1. Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration.
    Deshayes S; Plénat T; Charnet P; Divita G; Molle G; Heitz F
    Biochim Biophys Acta; 2006 Nov; 1758(11):1846-51. PubMed ID: 17011511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic channels formed by a primary amphipathic peptide containing a signal peptide and a nuclear localization sequence.
    Chaloin L; Dé E; Charnet P; Molle G; Heitz F
    Biochim Biophys Acta; 1998 Oct; 1375(1-2):52-60. PubMed ID: 9767105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis.
    Deshayes S; Heitz A; Morris MC; Charnet P; Divita G; Heitz F
    Biochemistry; 2004 Feb; 43(6):1449-57. PubMed ID: 14769021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-independent translocation of cell-penetrating peptides occurs without formation of pores. A biophysical study with pep-1.
    Henriques ST; Quintas A; Bagatolli LA; Homblé F; Castanho MA
    Mol Membr Biol; 2007; 24(4):282-93. PubMed ID: 17520484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles.
    Henriques ST; Castanho MA
    Biochemistry; 2004 Aug; 43(30):9716-24. PubMed ID: 15274626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cell penetrating peptides pVEC and W2-pVEC induce transformation of gel phase domains in phospholipid bilayers without affecting their integrity.
    Herbig ME; Assi F; Textor M; Merkle HP
    Biochemistry; 2006 Mar; 45(11):3598-609. PubMed ID: 16533042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of bilayer material properties in function and distribution of membrane proteins.
    McIntosh TJ; Simon SA
    Annu Rev Biophys Biomol Struct; 2006; 35():177-98. PubMed ID: 16689633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translocation mechanism(s) of cell-penetrating peptides: biophysical studies using artificial membrane bilayers.
    Di Pisa M; Chassaing G; Swiecicki JM
    Biochemistry; 2015 Jan; 54(2):194-207. PubMed ID: 25490050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of membrane lipids for the activity of pore forming peptides and proteins.
    Fuertes G; Giménez D; Esteban-Martin S; Garcia-Sáez A; Sánchez O; Salgado J
    Adv Exp Med Biol; 2010; 677():31-55. PubMed ID: 20687479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of amphipathic carrier peptides with membrane components in relation with their ability to deliver therapeutics.
    Deshayes S; Morris MC; Divita G; Heitz F
    J Pept Sci; 2006 Dec; 12(12):758-65. PubMed ID: 17131287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translocation or membrane disintegration? Implication of peptide-membrane interactions in pep-1 activity.
    Henriques ST; Castanho MA
    J Pept Sci; 2008 Apr; 14(4):482-7. PubMed ID: 18181239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation and ion channel properties of a five-helix Bundle protein.
    Dé E; Chaloin L; Heitz A; Méry J; Molle G; Heitz F
    J Pept Sci; 2001 Jan; 7(1):41-9. PubMed ID: 11245204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of channel-forming peptide nanostructures.
    Arseneault M; Dumont M; Otis F; Voyer N
    Biophys Chem; 2012 Mar; 162():6-13. PubMed ID: 22245249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary structure of cell-penetrating peptides controls membrane interaction and insertion.
    Eiríksdóttir E; Konate K; Langel U; Divita G; Deshayes S
    Biochim Biophys Acta; 2010 Jun; 1798(6):1119-28. PubMed ID: 20214875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of lipid bilayers and regulation of mechanosensitive function: from biological to biomimetic channels.
    Balleza D
    Channels (Austin); 2012; 6(4):220-33. PubMed ID: 22790280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological equilibria of ion channel peptides in oriented lipid bilayers revealed by 15N solid-state NMR spectroscopy.
    Sudheendra US; Bechinger B
    Biochemistry; 2005 Sep; 44(36):12120-7. PubMed ID: 16142910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of primary amphipathic cell penetrating peptides with model membranes: consequences on the mechanisms of intracellular delivery of therapeutics.
    Deshayes S; Morris MC; Divita G; Heitz F
    Curr Pharm Des; 2005; 11(28):3629-38. PubMed ID: 16305499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteins: membrane binding and pore formation. Introduction.
    Feil SC; Polekhina G; Gorman MA; Parker MW
    Adv Exp Med Biol; 2010; 677():1-13. PubMed ID: 20687476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of membrane active peptides with planar supported bilayers: an impedance spectroscopy study.
    Lin J; Motylinski J; Krauson AJ; Wimley WC; Searson PC; Hristova K
    Langmuir; 2012 Apr; 28(14):6088-96. PubMed ID: 22416892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.